[d2c46b]: / for age / age.R

Download this file

229 lines (221 with data), 12.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#for age
#paper1==============
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load(file="UMN_meta_beta.Rdata")
UMN_cpg <- UMN_meta_beta[,-c(2:37,39:133)]
paper1 <- read.table("for age/mmc2.csv",sep=",",header = T)
{
load(file="E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN/alldata/methylation.Rdata")
tmp = methylation[methylation$probe.id %in% paper1$Marker, ]
tmp = tmp[,c(1,4,10:12,21,23,25)]
tmp = as.data.frame(tmp)
tmp$probe.id = as.character(tmp$probe.id)
setdiff(paper1$Marker,tmp$probe.id)#"cg25428494","ch.13.39564907R"
}
beta = UMN_cpg[,colnames(UMN_cpg) %in% c("shareid","chf",as.character(paper1$Marker))]#64 CpGs
setdiff(paper1$Marker,colnames(beta))
#"ch.2.30415474F","cg19935065","cg13001142","cg04875128","cg03473532","ch.13.39564907R"
X <- data.frame(beta)
colnames(X)[1:2] <- c("ID","target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age1.csv",row.names = F,sep=",")
#test
load(file="test/JHU_meta_beta.Rdata")
beta = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("shareid",as.character(paper1$Marker))]#64 CpGs
X <- data.frame(beta)
colnames(X)[1] = "ID"
pdata <- data.frame(JHU_meta_beta$chf)
pdata$ID <- rownames(JHU_meta_beta)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age1_test.csv",row.names = F,sep=",")
#paper2===================
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load(file="UMN_meta_beta.Rdata")
paper2 <- c("cg05294455","cg08598221","cg09462576","cg15804973","cg20654468","cg25268718","cg26581729","cg02867102")
beta = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("shareid","chf",as.character(paper2))]#
X <- data.frame(beta)
colnames(X)[1:2] <- c("ID","target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age2.csv",row.names = F,sep=",")
#test
load(file="test/JHU_meta_beta.Rdata")
beta = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("shareid",as.character(paper2))]#64 CpGs
X <- data.frame(beta)
colnames(X)[1] = "ID"
pdata <- data.frame(JHU_meta_beta$chf)
pdata$ID <- rownames(JHU_meta_beta)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age2_test.csv",row.names = F,sep=",")
#paper3===================
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load(file="UMN_meta_beta.Rdata")
paper3 <- c("cg02228185","cg25809905","cg09809672","cg15379633","cg17861230")
beta = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("shareid","chf",as.character(paper3))]#
X <- data.frame(beta)
colnames(X)[1:2] <- c("ID","target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age3.csv",row.names = F,sep=",")
#test
load(file="test/JHU_meta_beta.Rdata")
beta = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("shareid",as.character(paper3))]#64 CpGs
X <- data.frame(beta)
colnames(X)[1] = "ID"
pdata <- data.frame(JHU_meta_beta$chf)
pdata$ID <- rownames(JHU_meta_beta)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age3_test.csv",row.names = F,sep=",")
#paper4====================
#all cpg
paper_all <- c(as.character(paper1$Marker),paper2,paper3)
#duplicated(paper_all);which(duplicated(paper_all))
paper_all = paper_all[!duplicated(paper_all)]
beta = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("shareid","chf",as.character(paper_all))]#
X <- data.frame(beta)
colnames(X)[1:2] <- c("ID","target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age4.csv",row.names = F,sep=",")
#test
load(file="test/JHU_meta_beta.Rdata")
beta = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("shareid",as.character(paper_all))]#64 CpGs
X <- data.frame(beta)
colnames(X)[1] = "ID"
pdata <- data.frame(JHU_meta_beta$chf)
pdata$ID <- rownames(JHU_meta_beta)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age4_test.csv",row.names = F,sep=",")
#paper1 + 5 EHR#########
beta = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("shareid","chf",as.character(paper1$Marker))]#
Patient_impute <- read.csv("Patient_impute_26_nor.csv",head=T,row.names = 1)
Patient_impute <- Patient_impute[,c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")]
X <- data.frame(cbind(Patient_impute,beta))
X <- X[,c(6:7,1:5,8:72)]
colnames(X)[1:2] <- c("ID","target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age15EHR.csv",row.names = F,sep=",")
#test
load(file="test/JHU_meta_beta.Rdata")
beta = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("shareid",as.character(paper1$Marker))]#64 CpGs
Patient_impute <- read.csv("Patient_impute_test_26_nor.csv",head=T,row.names = 1)
Patient_impute <- Patient_impute[,c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")]
X <- data.frame(cbind(Patient_impute,beta))
X <- X[,c(6,1:5,7:71)]
colnames(X)[1] = "ID"
pdata <- data.frame(JHU_meta_beta$chf)
pdata$ID <- rownames(JHU_meta_beta)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age15EHR_test.csv",row.names = F,sep=",")
#paper1-abs(Coefficient) > 10==============
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load(file="UMN_meta_beta.Rdata")
paper1 <- read.table("for age/mmc2.csv",sep=",",header = T)
paper1 <- filter(paper1,abs(Coefficient) >10)
beta = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("shareid","chf",as.character(paper1$Marker))]#64 CpGs
setdiff(paper1$Marker,colnames(beta))
#"cg19935065" "ch.13.39564907R"
X <- data.frame(beta)
colnames(X)[1:2] <- c("ID","target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age1Coefficient.csv",row.names = F,sep=",")
#test
load(file="test/JHU_meta_beta.Rdata")
beta = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("shareid",as.character(paper1$Marker))]#64 CpGs
X <- data.frame(beta)
colnames(X)[1] = "ID"
pdata <- data.frame(JHU_meta_beta$chf)
pdata$ID <- rownames(JHU_meta_beta)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age1Coefficient_test.csv",row.names = F,sep=",")
#paper1-abs(Coefficient) > 10 +5 EHR==============
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load(file="UMN_meta_beta.Rdata")
paper1 <- read.table("for age/mmc2.csv",sep=",",header = T)
paper1 <- filter(paper1,abs(Coefficient) >10)
beta = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("shareid","chf",as.character(paper1$Marker))]#64 CpGs
setdiff(paper1$Marker,colnames(beta))
#"cg19935065" "ch.13.39564907R"
Patient_impute <- read.csv("Patient_impute_26_nor.csv",head=T,row.names = 1)
Patient_impute <- Patient_impute[,c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")]
X <- data.frame(cbind(Patient_impute,beta))
X <- X[,c(6:7,1:5,8:33)]
colnames(X)[1:2] <- c("ID","target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age1Coefficient5EHR.csv",row.names = F,sep=",")
#test
load(file="test/JHU_meta_beta.Rdata")
beta = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("shareid",as.character(paper1$Marker))]#64 CpGs
Patient_impute <- read.csv("Patient_impute_test_26_nor.csv",head=T,row.names = 1)
Patient_impute <- Patient_impute[,c("AGE8","Sulfonamides","BMI8","Albumin_urine","CREAT8")]
X <- data.frame(cbind(Patient_impute,beta))
X <- X[,c(6,1:5,7:32)]
colnames(X)[1] = "ID"
pdata <- data.frame(JHU_meta_beta$chf)
pdata$ID <- rownames(JHU_meta_beta)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age1Coefficient5EHR_test.csv",row.names = F,sep=",")
#age============
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
load("UMN_DMP_new.Rdata")
X <- UMN_DMP_new[,colnames(UMN_DMP_new) %in% c("chf","AGE8")]
X <- data.frame(X)
X <- rownames_to_column(X,"ID")
#X$ID <- gsub('X','',X$ID)
colnames(X)[2] <- c("target")#chf
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age.csv",row.names = F,sep=",")
#test
load(file="JHU_DMP_new.Rdata")
X <- JHU_DMP_new[,colnames(JHU_DMP_new) %in% "AGE8"]
X <- data.frame(X)
rownames(X) <- rownames(JHU_DMP_new)
X <- rownames_to_column(X,"ID")
X$ID <- gsub('X','',X$ID)
colnames(X)[2] <- c("AGE8")#chf
pdata <- data.frame(JHU_DMP_new$chf)
pdata$ID <- rownames(JHU_DMP_new)
#write.table(pdata,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\20201126deepfm_pdata_test.txt",row.names = F)
write.table(X,"D:\\anaconda-python\\learn_DL\\Basic-DeepFM-model\\data\\new_1126/20210818deepfm_feature_age_test.csv",row.names = F,sep=",")
#circlize===========
{
library(circlize)
library(dplyr)
library(corrr)
library(tibble)
setwd("E:/workplace/mywork/methy/dbgap/chf/data_chf_contr/early_chf/c1_UMN_JHU/train_UMN_tset_JHU/1123_dataSummary/")
id3 <- read.table("xgblasso_DMP.csv",sep=",",header = T)
id3 <- as.character(id3$Feature)
beta1 = UMN_meta_beta[,colnames(UMN_meta_beta) %in% id3]
beta2 = JHU_meta_beta[,colnames(JHU_meta_beta) %in% id3]
beta = rbind(beta1,beta2)
a = beta[,-c(1,3,4,5)] %>%
correlate(method = "pearson") %>%
stretch()
colnames(a) = c("name","feature","Freq")
#a = a[-c(1,14:15,27:29,40:43,53:57,66:71,79:85,92:99,105:113,118:127,131:141,144:155,157:169),]
#a = a[c(6:30,36:60,66:90,96:120,126:150),]
a = a[a$name == "AGE8",]
chordDiagram(as.data.frame(a[-1,]), transparency = 0.5)
write.table(a,"for age/age_25cpg.csv",sep=",")
}
#paper1 cpg and age circlize######
paper1 <- read.table("for age/mmc2.csv",sep=",",header = T)
#paper1 <- filter(paper1,abs(Coefficient) >10)
beta1 = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("AGE8",as.character(paper1$Marker))]
beta2 = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("AGE8",as.character(paper1$Marker))]
beta = rbind(beta1,beta2)
corrr = beta %>%
correlate(method = "pearson") %>%
stretch()
colnames(corrr) = c("name","feature","Freq")
corrr = corrr[corrr$name == "AGE8",]
#paper2
beta1 = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("AGE8",as.character(paper2))]
beta2 = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("AGE8",as.character(paper2))]
beta = rbind(beta1,beta2)
corrr2 = beta %>%
correlate(method = "pearson") %>%
stretch()
colnames(corrr2) = c("name","feature","Freq")
corrr2 = corrr2[corrr2$name == "AGE8",]
#paper3
beta1 = UMN_meta_beta[,colnames(UMN_meta_beta) %in% c("AGE8",as.character(paper3))]
beta2 = JHU_meta_beta[,colnames(JHU_meta_beta) %in% c("AGE8",as.character(paper3))]
beta = rbind(beta1,beta2)
corrr3 = beta %>%
correlate(method = "pearson") %>%
stretch()
colnames(corrr3) = c("name","feature","Freq")
corrr3 = corrr3[corrr3$name == "AGE8",]
intersect(id3,paper_all)#0
summary(a$Freq);summary(corrr$Freq);summary(corrr2$Freq);summary(corrr3$Freq)