rm(list=ls())
library(tibble)
library(dplyr)
library(glmnet)
library(lars)
library(VennDiagram)
library(sigFeature)
library(e1071)
library(caret)
library(randomForest)
library(ltm)
#UMN_DMP_new:dmp lasso
{
setwd("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\early_chf\\c1_UMN_JHU\\train_UMN_tset_JHU/1123_dataSummary")
load("UMN_DMP_new.Rdata")
X <- as.matrix(UMN_DMP_new[,!colnames(UMN_DMP_new) %in% c("chf","cvd")]) #chf
y <- as.character(UMN_DMP_new$chf)
set.seed(2)
fitCV <- cv.glmnet(X, y, family = "binomial", type.measure = "auc", nfolds = 10)
#lambda.min
myCoefs <- coef(fitCV, s = "lambda.min")
lasso_fea <- myCoefs@Dimnames[[1]][which(myCoefs[,1] != 0 )]
lasso_fea <- data.frame(lasso_fea)
lasso_fea$x <- myCoefs@x
lasso_fea <- lasso_fea[-1,]
length(lasso_fea[,1])#103
#lambda.1se
myCoefs2 <- coef(fitCV, s="lambda.1se")
#lambda.1se
lasso_fea2 <- myCoefs2@Dimnames[[1]][which(myCoefs2[,1] != 0 )]
lasso_fea2 <- data.frame(lasso_fea2)
lasso_fea2$x <- myCoefs2@x
lasso_fea2 <- lasso_fea2[-1,]
length(lasso_fea2[,1])#91
set.seed(2)
cv_fit <- cv.glmnet(X, y, nfold=10, alpha = 1, family = "binomial", type.measure = "class")
myCoefs3 <- coef(cv_fit, s="lambda.min")
#lambda.min
lasso_fea3 <- myCoefs3@Dimnames[[1]][which(myCoefs3[,1] != 0 )]
lasso_fea3 <- data.frame(lasso_fea3)
lasso_fea3$x <- myCoefs3@x
lasso_fea3 <- lasso_fea3[-1,]
length(lasso_fea3[,1])#104
#2
myCoefs4 <- coef(cv_fit, s="lambda.1se")
#lambda.1se
lasso_fea4 <- myCoefs4@Dimnames[[1]][which(myCoefs4[,1] != 0 )]
lasso_fea4 <- data.frame(lasso_fea4)
lasso_fea4$x <- myCoefs4@x
lasso_fea4 <- lasso_fea4[-1,]
length(lasso_fea4[,1])#92
require("VennDiagram")
#VENN.LIST=list(lasso2_lambda1se=lasso_fea4$lasso_fea4,lasso2_lambdamin=lasso_fea3$lasso_fea3,lasso1_lambda1se=lasso_fea2$lasso_fea2,lasso1_lambdamin=lasso_fea$lasso_fea)
VENN.LIST=list(B_lambda1se=lasso_fea4$lasso_fea4,B_lambdamin=lasso_fea3$lasso_fea3,A_lambda1se=lasso_fea2$lasso_fea2,A_lambdamin=lasso_fea$lasso_fea)
venn.plot <- venn.diagram(VENN.LIST , NULL,
fill=c("darkmagenta", "darkblue","red","black"),
alpha=c(0.5,0.5,0.5,0.5), cex = 2,
cat.fontface="plain", cat.cex = 1.5,
main="Overlap of measure in 1se and min ")
grid.draw(venn.plot)
venn4=intersect(intersect(intersect(lasso_fea$lasso_fea,lasso_fea3$lasso_fea3),lasso_fea4$lasso_fea4),lasso_fea2$lasso_fea2)
venn3=union(union(union(lasso_fea$lasso_fea,lasso_fea3$lasso_fea3),lasso_fea4$lasso_fea4),lasso_fea2$lasso_fea2)
setwd("E:\\workplace\\mywork\\methy\\dbgap\\chf\\data_chf_contr\\early_chf\\c1_UMN_JHU\\train_UMN_tset_JHU/1123_dataSummary")
write.csv(venn4,'lasso_dmp_little.csv', row.names = F)
write.csv(venn3,'lasso_dmp_large.csv', row.names = F)
{
library(UpSetR)
B_lambda1se=lasso_fea4$lasso_fea4
B_lambdamin=lasso_fea3$lasso_fea3
A_lambda1se=lasso_fea2$lasso_fea2
A_lambdamin=lasso_fea$lasso_fea
input <- fromList(list(A_lambdamin=lasso_fea$lasso_fea,
A_lambda1se=lasso_fea2$lasso_fea2,
B_lambdamin=lasso_fea3$lasso_fea3,
B_lambda1se=lasso_fea4$lasso_fea4))
upset(input, order.by = "freq",nsets = 7,point.size = 3)
}
}