|
a |
|
b/federated_learning_healthcare.py |
|
|
1 |
# Generate synthetic data (pretending it's medical data) |
|
|
2 |
import torch |
|
|
3 |
import numpy as np |
|
|
4 |
|
|
|
5 |
# Generate synthetic data for two hospitals |
|
|
6 |
np.random.seed(0) |
|
|
7 |
hospital1_data = np.random.randn(100, 5) # 100 samples, 5 features |
|
|
8 |
hospital1_labels = (np.random.randn(100) > 0).astype(int) # Binary labels for readmission risk |
|
|
9 |
|
|
|
10 |
np.random.seed(1) |
|
|
11 |
hospital2_data = np.random.randn(200, 5) # 200 samples, 5 features |
|
|
12 |
hospital2_labels = (np.random.randn(200) > 0).astype(int) # Binary labels for readmission risk |
|
|
13 |
|
|
|
14 |
# Implement the Federated Learning process |
|
|
15 |
import syft as sy |
|
|
16 |
from torch import nn, optim |
|
|
17 |
|
|
|
18 |
# Hook PyTorch to PySyft |
|
|
19 |
hook = sy.TorchHook(torch) |
|
|
20 |
|
|
|
21 |
# Create virtual workers representing two hospitals |
|
|
22 |
hospital1 = sy.VirtualWorker(hook, id="hospital1") |
|
|
23 |
hospital2 = sy.VirtualWorker(hook, id="hospital2") |
|
|
24 |
|
|
|
25 |
# Share synthetic data with respective hospitals |
|
|
26 |
data_ptr_hospital1 = torch.tensor(hospital1_data).send(hospital1) |
|
|
27 |
labels_ptr_hospital1 = torch.tensor(hospital1_labels).send(hospital1) |
|
|
28 |
|
|
|
29 |
data_ptr_hospital2 = torch.tensor(hospital2_data).send(hospital2) |
|
|
30 |
labels_ptr_hospital2 = torch.tensor(hospital2_labels).send(hospital2) |
|
|
31 |
|
|
|
32 |
# Define the Federated Learning model (neural network) |
|
|
33 |
class FederatedModel(nn.Module): |
|
|
34 |
def __init__(self): |
|
|
35 |
super(FederatedModel, self).__init__() |
|
|
36 |
self.fc = nn.Linear(5, 1) |
|
|
37 |
|
|
|
38 |
def forward(self, x): |
|
|
39 |
return torch.sigmoid(self.fc(x)) |
|
|
40 |
|
|
|
41 |
# Define the loss function and optimizer |
|
|
42 |
model = FederatedModel() |
|
|
43 |
criterion = nn.BCELoss() |
|
|
44 |
optimizer = optim.SGD(model.parameters(), lr=0.1) |
|
|
45 |
|
|
|
46 |
# Federated Learning training loop |
|
|
47 |
epochs = 10 |
|
|
48 |
|
|
|
49 |
for epoch in range(epochs): |
|
|
50 |
# Train on hospital1 data |
|
|
51 |
model.send(hospital1) |
|
|
52 |
optimizer.zero_grad() |
|
|
53 |
pred_hospital1 = model(data_ptr_hospital1.float()) |
|
|
54 |
loss_hospital1 = criterion(pred_hospital1.view(-1), labels_ptr_hospital1.float()) |
|
|
55 |
loss_hospital1.backward() |
|
|
56 |
optimizer.step() |
|
|
57 |
model.get() |
|
|
58 |
|
|
|
59 |
# Train on hospital2 data |
|
|
60 |
model.send(hospital2) |
|
|
61 |
optimizer.zero_grad() |
|
|
62 |
pred_hospital2 = model(data_ptr_hospital2.float()) |
|
|
63 |
loss_hospital2 = criterion(pred_hospital2.view(-1), labels_ptr_hospital2.float()) |
|
|
64 |
loss_hospital2.backward() |
|
|
65 |
optimizer.step() |
|
|
66 |
model.get() |
|
|
67 |
|
|
|
68 |
# Aggregate the models (average) |
|
|
69 |
model_avg_params = (model.fc.weight.data + model.copy().send(hospital1).get().fc.weight.data) / 2 |
|
|
70 |
model_avg_bias = (model.fc.bias.data + model.copy().send(hospital1).get().fc.bias.data) / 2 |
|
|
71 |
|
|
|
72 |
# Update the model with averaged parameters |
|
|
73 |
model_avg = FederatedModel() |
|
|
74 |
model_avg.fc.weight.data = model_avg_params |
|
|
75 |
model_avg.fc.bias.data = model_avg_bias |
|
|
76 |
|
|
|
77 |
# Get the final model from any hospital (e.g., hospital1) |
|
|
78 |
final_model = model_avg.get() |
|
|
79 |
|
|
|
80 |
# For simplicity, let's use the same synthetic data from hospital1 as the test data |
|
|
81 |
test_data = torch.tensor(hospital1_data) |
|
|
82 |
test_labels = torch.tensor(hospital1_labels) |
|
|
83 |
|
|
|
84 |
# Evaluate the federated model on the test data |
|
|
85 |
with torch.no_grad(): |
|
|
86 |
model_avg.eval() # Set the model to evaluation mode |
|
|
87 |
predictions = model_avg(test_data.float()).round().squeeze().detach().numpy() |
|
|
88 |
|
|
|
89 |
# Calculate accuracy |
|
|
90 |
accuracy = (predictions == test_labels.numpy()).mean() |
|
|
91 |
print("Accuracy:", accuracy) |
|
|
92 |
|