[ad9713]: / SMOTE-NC / R2-XGB-SMOTENC.ipynb

Download this file

1912 lines (1911 with data), 98.2 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Import libraries\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import getpass\n",
    "import pdvega\n",
    "import plotly.graph_objs as go\n",
    "\n",
    "from plotly.offline import iplot, init_notebook_mode\n",
    "import plotly.io as pio\n",
    "from plotly.graph_objs import *\n",
    "\n",
    "# for configuring connection \n",
    "from configobj import ConfigObj\n",
    "import os\n",
    "\n",
    "%matplotlib inline\n",
    "\n",
    "\n",
    "import os\n",
    "\n",
    "\n",
    "from sklearn import linear_model\n",
    "from sklearn import metrics\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "#configure the notebook for use in offline mode\n",
    "init_notebook_mode(connected=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Unnamed: 0</th>\n",
       "      <th>hospitalid</th>\n",
       "      <th>sodium</th>\n",
       "      <th>electivesurgery</th>\n",
       "      <th>vent</th>\n",
       "      <th>dialysis</th>\n",
       "      <th>gcs</th>\n",
       "      <th>urine</th>\n",
       "      <th>wbc</th>\n",
       "      <th>temperature</th>\n",
       "      <th>...</th>\n",
       "      <th>m11_True</th>\n",
       "      <th>m12_True</th>\n",
       "      <th>m13_True</th>\n",
       "      <th>m14_True</th>\n",
       "      <th>m15_True</th>\n",
       "      <th>m16_True</th>\n",
       "      <th>m17_True</th>\n",
       "      <th>m18_True</th>\n",
       "      <th>m19_True</th>\n",
       "      <th>m20_True</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>59.0</td>\n",
       "      <td>139.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>14.7</td>\n",
       "      <td>36.1</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>73.0</td>\n",
       "      <td>134.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>14.1</td>\n",
       "      <td>39.3</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>73.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>34.8</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>63.0</td>\n",
       "      <td>137.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>10.9</td>\n",
       "      <td>36.6</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>63.0</td>\n",
       "      <td>135.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>5.9</td>\n",
       "      <td>35.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 85 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   Unnamed: 0  hospitalid  sodium  electivesurgery  vent  dialysis   gcs  \\\n",
       "0           0        59.0   139.0             -1.0   0.0       0.0  15.0   \n",
       "1           1        73.0   134.0             -1.0   0.0       0.0  13.0   \n",
       "2           2        73.0    -1.0              1.0   1.0       0.0  15.0   \n",
       "3           3        63.0   137.0             -1.0   0.0       0.0  15.0   \n",
       "4           4        63.0   135.0             -1.0   0.0       0.0  15.0   \n",
       "\n",
       "   urine   wbc  temperature  ...  m11_True  m12_True  m13_True  m14_True  \\\n",
       "0   -1.0  14.7         36.1  ...         1         0         0         1   \n",
       "1   -1.0  14.1         39.3  ...         1         0         0         1   \n",
       "2   -1.0   8.0         34.8  ...         0         0         1         0   \n",
       "3   -1.0  10.9         36.6  ...         1         0         1         1   \n",
       "4   -1.0   5.9         35.0  ...         0         0         1         0   \n",
       "\n",
       "   m15_True  m16_True  m17_True  m18_True  m19_True  m20_True  \n",
       "0         1         0         0         0         1         0  \n",
       "1         1         0         0         0         1         0  \n",
       "2         0         1         0         1         0         0  \n",
       "3         1         0         0         1         1         0  \n",
       "4         0         0         0         1         0         0  \n",
       "\n",
       "[5 rows x 85 columns]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df= pd.read_csv(\"analysis.csv\")\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(95148, 85)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "del df['hospitalid']\n",
    "\n",
    "df = df.drop(df.columns[[0]], axis=1)\n",
    "df = df.drop(df.columns[[63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82]], axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "sodium                        18244\n",
       "electivesurgery               74997\n",
       "vent                              0\n",
       "dialysis                          0\n",
       "gcs                            1728\n",
       "urine                         45829\n",
       "wbc                           22141\n",
       "temperature                    4139\n",
       "respiratoryrate                 582\n",
       "heartrate                       188\n",
       "meanbp                          263\n",
       "creatinine                    18332\n",
       "ph                            73474\n",
       "hematocrit                    20021\n",
       "albumin                       58143\n",
       "pao2                          73474\n",
       "pco2                          73474\n",
       "bun                           18774\n",
       "glucose                       10909\n",
       "bilirubin                     60797\n",
       "fio2                          73474\n",
       "age                            3356\n",
       "thrombolytics                     0\n",
       "aids                              0\n",
       "hepaticfailure                    0\n",
       "lymphoma                          0\n",
       "metastaticcancer                  0\n",
       "leukemia                          0\n",
       "immunosuppression                 0\n",
       "cirrhosis                         0\n",
       "                              ...  \n",
       "admitsource_1.0                   0\n",
       "admitsource_2.0                   0\n",
       "admitsource_3.0                   0\n",
       "admitsource_4.0                   0\n",
       "admitsource_5.0                   0\n",
       "admitsource_6.0                   0\n",
       "admitsource_7.0                   0\n",
       "admitsource_8.0                   0\n",
       "diaggroup_ARF                     0\n",
       "diaggroup_Asthma-Emphys           0\n",
       "diaggroup_CABG                    0\n",
       "diaggroup_CHF                     0\n",
       "diaggroup_CVA                     0\n",
       "diaggroup_CVOther                 0\n",
       "diaggroup_CardiacArrest           0\n",
       "diaggroup_ChestPainUnknown        0\n",
       "diaggroup_Coma                    0\n",
       "diaggroup_DKA                     0\n",
       "diaggroup_GIBleed                 0\n",
       "diaggroup_GIObstruction           0\n",
       "diaggroup_Neuro                   0\n",
       "diaggroup_Other                   0\n",
       "diaggroup_Overdose                0\n",
       "diaggroup_PNA                     0\n",
       "diaggroup_RespMedOther            0\n",
       "diaggroup_Sepsis                  0\n",
       "diaggroup_Trauma                  0\n",
       "diaggroup_ValveDz                 0\n",
       "gender_Male                       0\n",
       "gender_Other                      0\n",
       "Length: 63, dtype: int64"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "missing_values_count = df.isnull().sum()\n",
    "#df.replace('-1.0', np.nan)\n",
    "df = df.replace({-1.0:np.nan, -1.0:np.nan})\n",
    "df.head()\n",
    "missing_values_count = df.isnull().sum()\n",
    "missing_values_count"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**We moved all the pre-processing including splitting>imputation>Standardization to the CV iterations**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "cols_to_norm=['gcs', 'urine', 'wbc', 'sodium',\n",
    "       'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n",
    "       'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n",
    "       'bilirubin', 'fio2', 'age', 'offset']\n",
    "\n",
    "X=df.drop('destcopy', 1)\n",
    "y=df['destcopy']\n",
    "df_cols = list(X)     #fancy impute removes column names."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['sodium', 'electivesurgery', 'vent', 'dialysis', 'gcs', 'urine', 'wbc',\n",
       "       'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n",
       "       'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n",
       "       'bilirubin', 'fio2', 'age', 'thrombolytics', 'aids', 'hepaticfailure',\n",
       "       'lymphoma', 'metastaticcancer', 'leukemia', 'immunosuppression',\n",
       "       'cirrhosis', 'readmit', 'offset', 'destcopy', 'admitsource_1.0',\n",
       "       'admitsource_2.0', 'admitsource_3.0', 'admitsource_4.0',\n",
       "       'admitsource_5.0', 'admitsource_6.0', 'admitsource_7.0',\n",
       "       'admitsource_8.0', 'diaggroup_ARF', 'diaggroup_Asthma-Emphys',\n",
       "       'diaggroup_CABG', 'diaggroup_CHF', 'diaggroup_CVA', 'diaggroup_CVOther',\n",
       "       'diaggroup_CardiacArrest', 'diaggroup_ChestPainUnknown',\n",
       "       'diaggroup_Coma', 'diaggroup_DKA', 'diaggroup_GIBleed',\n",
       "       'diaggroup_GIObstruction', 'diaggroup_Neuro', 'diaggroup_Other',\n",
       "       'diaggroup_Overdose', 'diaggroup_PNA', 'diaggroup_RespMedOther',\n",
       "       'diaggroup_Sepsis', 'diaggroup_Trauma', 'diaggroup_ValveDz',\n",
       "       'gender_Male', 'gender_Other'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.columns"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**XGB**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "from collections import Counter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\externals\\six.py:31: DeprecationWarning:\n",
      "\n",
      "The module is deprecated in version 0.21 and will be removed in version 0.23 since we've dropped support for Python 2.7. Please rely on the official version of six (https://pypi.org/project/six/).\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7169732002101944\n",
      "f-score: 0.7169732002101944\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.39      0.48      0.95      0.43      0.68      0.44       642\n",
      "          2       0.79      0.90      0.41      0.84      0.61      0.39      6776\n",
      "          3       0.46      0.20      0.95      0.28      0.44      0.18      1716\n",
      "          4       0.15      0.10      0.98      0.12      0.31      0.09       381\n",
      "\n",
      "avg / total       0.68      0.72      0.57      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7043615344193379\n",
      "f-score: 0.7043615344193379\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.47      0.51      0.93      0.49      0.69      0.46       974\n",
      "          2       0.87      0.79      0.57      0.83      0.67      0.46      7520\n",
      "          3       0.16      0.30      0.87      0.20      0.51      0.24       697\n",
      "          4       0.10      0.10      0.97      0.10      0.30      0.08       324\n",
      "\n",
      "avg / total       0.75      0.70      0.64      0.73      0.65      0.43      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7086705202312139\n",
      "f-score: 0.7086705202312139\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.57      0.59      0.93      0.58      0.74      0.53      1247\n",
      "          2       0.81      0.86      0.54      0.83      0.68      0.48      6585\n",
      "          3       0.33      0.23      0.91      0.27      0.46      0.20      1462\n",
      "          4       0.10      0.10      0.98      0.10      0.31      0.08       221\n",
      "\n",
      "avg / total       0.69      0.71      0.66      0.70      0.65      0.43      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6671571203363111\n",
      "f-score: 0.6671571203363111\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.58      0.92      0.52      0.73      0.51      1129\n",
      "          2       0.78      0.84      0.51      0.81      0.66      0.45      6348\n",
      "          3       0.30      0.19      0.93      0.23      0.42      0.16      1285\n",
      "          4       0.22      0.13      0.96      0.17      0.36      0.12       753\n",
      "\n",
      "avg / total       0.63      0.67      0.65      0.65      0.61      0.39      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6906988964792433\n",
      "f-score: 0.6906988964792433\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.53      0.55      0.94      0.54      0.72      0.49      1085\n",
      "          2       0.78      0.87      0.50      0.82      0.66      0.45      6437\n",
      "          3       0.40      0.19      0.94      0.26      0.43      0.17      1657\n",
      "          4       0.12      0.16      0.96      0.14      0.39      0.14       336\n",
      "\n",
      "avg / total       0.66      0.69      0.64      0.67      0.61      0.39      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6855491329479769\n",
      "f-score: 0.6855491329479769\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.55      0.93      0.47      0.71      0.49       785\n",
      "          2       0.76      0.90      0.46      0.82      0.64      0.43      6224\n",
      "          3       0.50      0.22      0.94      0.31      0.46      0.19      2026\n",
      "          4       0.19      0.08      0.98      0.11      0.28      0.07       480\n",
      "\n",
      "avg / total       0.65      0.69      0.63      0.65      0.59      0.37      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7142406726221755\n",
      "f-score: 0.7142406726221755\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.50      0.51      0.95      0.51      0.70      0.47       853\n",
      "          2       0.80      0.90      0.46      0.84      0.64      0.43      6684\n",
      "          3       0.35      0.26      0.93      0.29      0.49      0.22      1209\n",
      "          4       0.26      0.08      0.98      0.12      0.28      0.07       769\n",
      "\n",
      "avg / total       0.67      0.71      0.61      0.69      0.60      0.38      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7141355754072517\n",
      "f-score: 0.7141355754072517\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.55      0.46      0.96      0.50      0.66      0.42       933\n",
      "          2       0.78      0.91      0.41      0.84      0.61      0.39      6645\n",
      "          3       0.39      0.20      0.93      0.26      0.43      0.17      1675\n",
      "          4       0.10      0.06      0.98      0.08      0.25      0.06       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6835190245953332\n",
      "f-score: 0.6835190245953332\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.54      0.94      0.53      0.71      0.49      1031\n",
      "          2       0.78      0.87      0.50      0.82      0.66      0.46      6399\n",
      "          3       0.35      0.20      0.93      0.25      0.43      0.17      1495\n",
      "          4       0.16      0.13      0.96      0.14      0.35      0.11       589\n",
      "\n",
      "avg / total       0.65      0.68      0.65      0.66      0.61      0.39      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6930838763926844\n",
      "f-score: 0.6930838763926844\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.61      0.92      0.56      0.75      0.54      1157\n",
      "          2       0.81      0.85      0.56      0.83      0.69      0.48      6600\n",
      "          3       0.30      0.22      0.93      0.25      0.45      0.19      1156\n",
      "          4       0.12      0.09      0.96      0.11      0.30      0.08       601\n",
      "\n",
      "avg / total       0.67      0.69      0.67      0.68      0.64      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7202312138728324\n",
      "f-score: 0.7202312138728324\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.49      0.95      0.45      0.68      0.44       642\n",
      "          2       0.79      0.91      0.41      0.84      0.61      0.39      6776\n",
      "          3       0.45      0.21      0.94      0.29      0.44      0.18      1716\n",
      "          4       0.18      0.11      0.98      0.14      0.33      0.10       381\n",
      "\n",
      "avg / total       0.68      0.72      0.57      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7106673673147662\n",
      "f-score: 0.7106673673147662\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.54      0.93      0.50      0.71      0.48       974\n",
      "          2       0.88      0.80      0.58      0.84      0.68      0.48      7520\n",
      "          3       0.17      0.31      0.88      0.22      0.52      0.26       697\n",
      "          4       0.09      0.08      0.97      0.09      0.28      0.07       324\n",
      "\n",
      "avg / total       0.76      0.71      0.66      0.73      0.66      0.45      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7089858118759853\n",
      "f-score: 0.7089858118759853\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.57      0.58      0.93      0.57      0.73      0.52      1247\n",
      "          2       0.81      0.86      0.55      0.83      0.68      0.48      6585\n",
      "          3       0.34      0.25      0.91      0.29      0.48      0.21      1462\n",
      "          4       0.06      0.06      0.98      0.06      0.24      0.05       221\n",
      "\n",
      "avg / total       0.69      0.71      0.66      0.70      0.65      0.44      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6689437729900157\n",
      "f-score: 0.6689437729900157\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.47      0.57      0.91      0.52      0.72      0.51      1129\n",
      "          2       0.78      0.84      0.52      0.81      0.67      0.46      6348\n",
      "          3       0.31      0.20      0.93      0.24      0.43      0.17      1285\n",
      "          4       0.23      0.13      0.96      0.16      0.35      0.11       753\n",
      "\n",
      "avg / total       0.64      0.67      0.66      0.65      0.62      0.40      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6909090909090909\n",
      "f-score: 0.6909090909090909\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.54      0.56      0.94      0.55      0.73      0.51      1085\n",
      "          2       0.79      0.87      0.51      0.83      0.66      0.46      6437\n",
      "          3       0.41      0.20      0.94      0.27      0.43      0.17      1657\n",
      "          4       0.08      0.11      0.95      0.09      0.32      0.09       336\n",
      "\n",
      "avg / total       0.67      0.69      0.65      0.67      0.62      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6831318970047294\n",
      "f-score: 0.6831318970047294\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.53      0.93      0.47      0.70      0.47       785\n",
      "          2       0.76      0.90      0.45      0.82      0.64      0.43      6224\n",
      "          3       0.50      0.21      0.94      0.30      0.45      0.19      2026\n",
      "          4       0.15      0.07      0.98      0.10      0.26      0.06       480\n",
      "\n",
      "avg / total       0.64      0.68      0.62      0.65      0.59      0.36      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7130846032580137\n",
      "f-score: 0.7130846032580137\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.51      0.95      0.50      0.69      0.46       853\n",
      "          2       0.80      0.89      0.47      0.84      0.65      0.43      6684\n",
      "          3       0.36      0.28      0.93      0.31      0.51      0.24      1209\n",
      "          4       0.29      0.08      0.98      0.13      0.29      0.07       769\n",
      "\n",
      "avg / total       0.67      0.71      0.61      0.69      0.60      0.38      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7142406726221755\n",
      "f-score: 0.7142406726221755\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.54      0.47      0.96      0.50      0.67      0.43       933\n",
      "          2       0.78      0.91      0.41      0.84      0.61      0.39      6645\n",
      "          3       0.40      0.20      0.94      0.26      0.43      0.17      1675\n",
      "          4       0.08      0.05      0.98      0.06      0.23      0.05       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6776329619508094\n",
      "f-score: 0.6776329619508094\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.54      0.93      0.51      0.71      0.48      1031\n",
      "          2       0.78      0.86      0.52      0.82      0.67      0.46      6399\n",
      "          3       0.35      0.21      0.93      0.26      0.44      0.18      1495\n",
      "          4       0.15      0.12      0.95      0.13      0.34      0.10       589\n",
      "\n",
      "avg / total       0.65      0.68      0.65      0.66      0.61      0.40      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6961320159764558\n",
      "f-score: 0.6961320159764558\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.61      0.92      0.56      0.75      0.55      1157\n",
      "          2       0.81      0.85      0.56      0.83      0.69      0.49      6600\n",
      "          3       0.29      0.22      0.93      0.25      0.45      0.19      1156\n",
      "          4       0.16      0.09      0.97      0.12      0.30      0.08       601\n",
      "\n",
      "avg / total       0.67      0.70      0.67      0.68      0.64      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7162375197057278\n",
      "f-score: 0.7162375197057278\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.41      0.50      0.95      0.45      0.69      0.45       642\n",
      "          2       0.79      0.91      0.40      0.84      0.60      0.38      6776\n",
      "          3       0.45      0.18      0.95      0.26      0.42      0.16      1716\n",
      "          4       0.16      0.11      0.98      0.13      0.32      0.10       381\n",
      "\n",
      "avg / total       0.68      0.72      0.56      0.68      0.56      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7158171308460326\n",
      "f-score: 0.7158171308460325\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.55      0.93      0.51      0.71      0.49       974\n",
      "          2       0.88      0.80      0.59      0.84      0.69      0.48      7520\n",
      "          3       0.18      0.32      0.88      0.23      0.53      0.27       697\n",
      "          4       0.07      0.07      0.97      0.07      0.26      0.06       324\n",
      "\n",
      "avg / total       0.76      0.72      0.66      0.74      0.66      0.45      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7233841303205465\n",
      "f-score: 0.7233841303205465\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.59      0.58      0.94      0.58      0.74      0.53      1247\n",
      "          2       0.81      0.88      0.53      0.84      0.68      0.48      6585\n",
      "          3       0.36      0.23      0.92      0.28      0.46      0.20      1462\n",
      "          4       0.11      0.06      0.99      0.08      0.25      0.06       221\n",
      "\n",
      "avg / total       0.69      0.72      0.65      0.70      0.65      0.43      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.670940620073568\n",
      "f-score: 0.670940620073568\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.50      0.60      0.92      0.54      0.74      0.54      1129\n",
      "          2       0.78      0.84      0.52      0.81      0.66      0.45      6348\n",
      "          3       0.31      0.20      0.93      0.24      0.43      0.17      1285\n",
      "          4       0.21      0.12      0.96      0.16      0.34      0.11       753\n",
      "\n",
      "avg / total       0.64      0.67      0.66      0.65      0.61      0.40      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6832369942196532\n",
      "f-score: 0.6832369942196532\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.56      0.93      0.53      0.72      0.50      1085\n",
      "          2       0.79      0.86      0.51      0.82      0.66      0.46      6437\n",
      "          3       0.37      0.19      0.93      0.25      0.42      0.16      1657\n",
      "          4       0.10      0.13      0.96      0.11      0.35      0.11       336\n",
      "\n",
      "avg / total       0.66      0.68      0.65      0.66      0.62      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6956384655806621\n",
      "f-score: 0.6956384655806621\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.44      0.54      0.94      0.49      0.71      0.49       785\n",
      "          2       0.76      0.91      0.46      0.83      0.65      0.44      6224\n",
      "          3       0.55      0.25      0.94      0.34      0.48      0.22      2026\n",
      "          4       0.15      0.07      0.98      0.09      0.26      0.06       480\n",
      "\n",
      "avg / total       0.66      0.70      0.63      0.66      0.60      0.38      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7121387283236994\n",
      "f-score: 0.7121387283236994\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.52      0.95      0.51      0.70      0.47       853\n",
      "          2       0.79      0.89      0.45      0.84      0.64      0.42      6684\n",
      "          3       0.33      0.24      0.93      0.28      0.47      0.21      1209\n",
      "          4       0.32      0.09      0.98      0.14      0.30      0.08       769\n",
      "\n",
      "avg / total       0.67      0.71      0.60      0.68      0.59      0.37      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7149763531266421\n",
      "f-score: 0.714976353126642\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.55      0.47      0.96      0.51      0.67      0.43       933\n",
      "          2       0.78      0.91      0.40      0.84      0.60      0.38      6645\n",
      "          3       0.41      0.19      0.94      0.26      0.43      0.17      1675\n",
      "          4       0.06      0.04      0.98      0.05      0.20      0.04       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6824679419802396\n",
      "f-score: 0.6824679419802396\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.55      0.94      0.53      0.72      0.49      1031\n",
      "          2       0.78      0.87      0.51      0.82      0.66      0.46      6399\n",
      "          3       0.33      0.21      0.92      0.26      0.44      0.18      1495\n",
      "          4       0.18      0.13      0.96      0.15      0.35      0.11       589\n",
      "\n",
      "avg / total       0.65      0.68      0.65      0.66      0.62      0.40      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6994954803447551\n",
      "f-score: 0.6994954803447551\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.61      0.92      0.55      0.75      0.54      1157\n",
      "          2       0.81      0.85      0.55      0.83      0.69      0.49      6600\n",
      "          3       0.31      0.22      0.93      0.26      0.45      0.19      1156\n",
      "          4       0.15      0.09      0.97      0.11      0.29      0.08       601\n",
      "\n",
      "avg / total       0.67      0.70      0.67      0.68      0.64      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.72044140830268\n",
      "f-score: 0.72044140830268\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.49      0.95      0.45      0.68      0.44       642\n",
      "          2       0.79      0.91      0.41      0.84      0.61      0.39      6776\n",
      "          3       0.47      0.21      0.95      0.29      0.45      0.19      1716\n",
      "          4       0.16      0.10      0.98      0.12      0.31      0.09       381\n",
      "\n",
      "avg / total       0.68      0.72      0.56      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7086705202312139\n",
      "f-score: 0.7086705202312139\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.54      0.93      0.51      0.71      0.48       974\n",
      "          2       0.88      0.80      0.58      0.84      0.68      0.48      7520\n",
      "          3       0.16      0.29      0.88      0.20      0.50      0.24       697\n",
      "          4       0.09      0.09      0.97      0.09      0.29      0.08       324\n",
      "\n",
      "avg / total       0.76      0.71      0.65      0.73      0.66      0.45      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7070940620073568\n",
      "f-score: 0.7070940620073568\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.56      0.58      0.93      0.57      0.73      0.52      1247\n",
      "          2       0.81      0.86      0.54      0.83      0.68      0.48      6585\n",
      "          3       0.32      0.22      0.92      0.26      0.45      0.19      1462\n",
      "          4       0.08      0.08      0.98      0.08      0.27      0.07       221\n",
      "\n",
      "avg / total       0.68      0.71      0.66      0.69      0.64      0.43      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6684182869153967\n",
      "f-score: 0.6684182869153967\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.59      0.91      0.53      0.73      0.52      1129\n",
      "          2       0.78      0.85      0.52      0.81      0.66      0.45      6348\n",
      "          3       0.27      0.18      0.93      0.21      0.40      0.15      1285\n",
      "          4       0.22      0.12      0.97      0.15      0.34      0.10       753\n",
      "\n",
      "avg / total       0.63      0.67      0.65      0.65      0.61      0.39      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6949027850761955\n",
      "f-score: 0.6949027850761955\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.54      0.93      0.53      0.71      0.49      1085\n",
      "          2       0.79      0.88      0.50      0.83      0.66      0.46      6437\n",
      "          3       0.42      0.20      0.94      0.27      0.44      0.18      1657\n",
      "          4       0.11      0.13      0.96      0.12      0.35      0.12       336\n",
      "\n",
      "avg / total       0.67      0.69      0.64      0.67      0.62      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6911192853389385\n",
      "f-score: 0.6911192853389385\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.44      0.55      0.94      0.49      0.72      0.50       785\n",
      "          2       0.76      0.91      0.47      0.83      0.65      0.44      6224\n",
      "          3       0.51      0.23      0.94      0.32      0.47      0.20      2026\n",
      "          4       0.16      0.07      0.98      0.10      0.27      0.07       480\n",
      "\n",
      "avg / total       0.65      0.69      0.63      0.66      0.60      0.38      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7078297425118234\n",
      "f-score: 0.7078297425118234\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.50      0.95      0.49      0.69      0.45       853\n",
      "          2       0.80      0.89      0.47      0.84      0.64      0.43      6684\n",
      "          3       0.33      0.27      0.92      0.30      0.50      0.23      1209\n",
      "          4       0.26      0.07      0.98      0.12      0.27      0.07       769\n",
      "\n",
      "avg / total       0.67      0.71      0.61      0.68      0.60      0.38      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7168681029952706\n",
      "f-score: 0.7168681029952706\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.56      0.45      0.96      0.50      0.66      0.41       933\n",
      "          2       0.78      0.91      0.41      0.84      0.61      0.39      6645\n",
      "          3       0.40      0.21      0.93      0.28      0.44      0.18      1675\n",
      "          4       0.11      0.07      0.98      0.09      0.27      0.06       262\n",
      "\n",
      "avg / total       0.68      0.72      0.57      0.69      0.58      0.35      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6847803237334454\n",
      "f-score: 0.6847803237334454\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.50      0.54      0.93      0.52      0.71      0.49      1031\n",
      "          2       0.79      0.87      0.52      0.83      0.67      0.47      6399\n",
      "          3       0.35      0.23      0.92      0.27      0.46      0.19      1495\n",
      "          4       0.19      0.12      0.97      0.15      0.34      0.11       589\n",
      "\n",
      "avg / total       0.65      0.68      0.66      0.66      0.62      0.40      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6996005886062645\n",
      "f-score: 0.6996005886062645\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.61      0.92      0.56      0.75      0.54      1157\n",
      "          2       0.82      0.85      0.56      0.83      0.69      0.49      6600\n",
      "          3       0.30      0.22      0.93      0.26      0.46      0.19      1156\n",
      "          4       0.14      0.08      0.97      0.10      0.28      0.07       601\n",
      "\n",
      "avg / total       0.67      0.70      0.68      0.68      0.64      0.44      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7178139779295849\n",
      "f-score: 0.7178139779295849\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.51      0.95      0.46      0.69      0.46       642\n",
      "          2       0.79      0.90      0.41      0.84      0.61      0.39      6776\n",
      "          3       0.45      0.21      0.95      0.28      0.44      0.18      1716\n",
      "          4       0.14      0.08      0.98      0.10      0.29      0.07       381\n",
      "\n",
      "avg / total       0.68      0.72      0.57      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7165528113504992\n",
      "f-score: 0.7165528113504992\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.53      0.94      0.50      0.70      0.47       974\n",
      "          2       0.88      0.80      0.58      0.84      0.68      0.48      7520\n",
      "          3       0.18      0.32      0.88      0.23      0.53      0.27       697\n",
      "          4       0.10      0.09      0.97      0.10      0.30      0.08       324\n",
      "\n",
      "avg / total       0.76      0.72      0.65      0.74      0.66      0.45      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7057277982133473\n",
      "f-score: 0.7057277982133473\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.56      0.59      0.93      0.57      0.74      0.53      1247\n",
      "          2       0.81      0.85      0.54      0.83      0.68      0.48      6585\n",
      "          3       0.33      0.23      0.92      0.27      0.46      0.20      1462\n",
      "          4       0.10      0.10      0.98      0.10      0.30      0.08       221\n",
      "\n",
      "avg / total       0.68      0.71      0.66      0.69      0.64      0.43      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6705202312138728\n",
      "f-score: 0.6705202312138728\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.58      0.91      0.53      0.73      0.51      1129\n",
      "          2       0.78      0.85      0.52      0.81      0.66      0.45      6348\n",
      "          3       0.32      0.19      0.94      0.24      0.42      0.16      1285\n",
      "          4       0.20      0.12      0.96      0.15      0.35      0.11       753\n",
      "\n",
      "avg / total       0.64      0.67      0.66      0.65      0.61      0.39      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6850236468733578\n",
      "f-score: 0.6850236468733578\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.53      0.55      0.94      0.54      0.72      0.50      1085\n",
      "          2       0.78      0.86      0.51      0.82      0.66      0.45      6437\n",
      "          3       0.41      0.22      0.93      0.28      0.45      0.19      1657\n",
      "          4       0.09      0.12      0.95      0.10      0.35      0.11       336\n",
      "\n",
      "avg / total       0.67      0.69      0.65      0.67      0.62      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6862848134524435\n",
      "f-score: 0.6862848134524435\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.52      0.93      0.46      0.70      0.47       785\n",
      "          2       0.76      0.90      0.46      0.82      0.64      0.43      6224\n",
      "          3       0.52      0.23      0.94      0.32      0.46      0.20      2026\n",
      "          4       0.18      0.09      0.98      0.12      0.30      0.08       480\n",
      "\n",
      "avg / total       0.65      0.69      0.63      0.65      0.59      0.37      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7088807146610615\n",
      "f-score: 0.7088807146610615\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.50      0.95      0.49      0.69      0.45       853\n",
      "          2       0.80      0.89      0.46      0.84      0.64      0.43      6684\n",
      "          3       0.33      0.26      0.93      0.29      0.49      0.22      1209\n",
      "          4       0.27      0.09      0.98      0.13      0.29      0.08       769\n",
      "\n",
      "avg / total       0.67      0.71      0.61      0.68      0.60      0.38      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7135049921177089\n",
      "f-score: 0.713504992117709\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.57      0.45      0.96      0.50      0.66      0.41       933\n",
      "          2       0.78      0.91      0.40      0.84      0.61      0.39      6645\n",
      "          3       0.38      0.19      0.93      0.25      0.42      0.16      1675\n",
      "          4       0.10      0.07      0.98      0.09      0.27      0.06       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6846752154719361\n",
      "f-score: 0.6846752154719361\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.53      0.94      0.52      0.70      0.48      1031\n",
      "          2       0.78      0.87      0.51      0.83      0.66      0.46      6399\n",
      "          3       0.35      0.21      0.93      0.27      0.44      0.18      1495\n",
      "          4       0.18      0.13      0.96      0.15      0.35      0.11       589\n",
      "\n",
      "avg / total       0.65      0.68      0.65      0.66      0.61      0.39      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6931889846541939\n",
      "f-score: 0.6931889846541939\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.50      0.61      0.91      0.55      0.75      0.54      1157\n",
      "          2       0.81      0.85      0.55      0.83      0.69      0.48      6600\n",
      "          3       0.28      0.20      0.93      0.23      0.43      0.17      1156\n",
      "          4       0.14      0.09      0.96      0.11      0.29      0.08       601\n",
      "\n",
      "avg / total       0.67      0.69      0.67      0.68      0.64      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7158171308460326\n",
      "f-score: 0.7158171308460325\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.40      0.48      0.95      0.44      0.68      0.44       642\n",
      "          2       0.79      0.90      0.40      0.84      0.60      0.38      6776\n",
      "          3       0.46      0.21      0.95      0.29      0.44      0.18      1716\n",
      "          4       0.12      0.07      0.98      0.09      0.27      0.07       381\n",
      "\n",
      "avg / total       0.68      0.72      0.56      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7128744088281661\n",
      "f-score: 0.7128744088281661\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.47      0.54      0.93      0.50      0.71      0.48       974\n",
      "          2       0.88      0.80      0.58      0.84      0.68      0.48      7520\n",
      "          3       0.17      0.32      0.88      0.22      0.53      0.26       697\n",
      "          4       0.08      0.07      0.97      0.07      0.26      0.06       324\n",
      "\n",
      "avg / total       0.76      0.71      0.65      0.73      0.66      0.45      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.708039936941671\n",
      "f-score: 0.708039936941671\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.57      0.58      0.93      0.58      0.74      0.52      1247\n",
      "          2       0.81      0.86      0.54      0.83      0.68      0.48      6585\n",
      "          3       0.33      0.23      0.91      0.27      0.46      0.19      1462\n",
      "          4       0.08      0.09      0.98      0.08      0.29      0.08       221\n",
      "\n",
      "avg / total       0.69      0.71      0.66      0.70      0.65      0.43      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6690488702049395\n",
      "f-score: 0.6690488702049395\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.57      0.92      0.52      0.72      0.51      1129\n",
      "          2       0.78      0.84      0.52      0.81      0.66      0.45      6348\n",
      "          3       0.32      0.21      0.93      0.25      0.44      0.18      1285\n",
      "          4       0.21      0.12      0.96      0.15      0.34      0.11       753\n",
      "\n",
      "avg / total       0.64      0.67      0.66      0.65      0.61      0.39      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6901734104046243\n",
      "f-score: 0.6901734104046243\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.55      0.93      0.53      0.72      0.50      1085\n",
      "          2       0.78      0.87      0.50      0.83      0.66      0.45      6437\n",
      "          3       0.41      0.19      0.94      0.26      0.42      0.16      1657\n",
      "          4       0.11      0.15      0.96      0.13      0.37      0.13       336\n",
      "\n",
      "avg / total       0.66      0.69      0.64      0.67      0.61      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6906988964792433\n",
      "f-score: 0.6906988964792433\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.44      0.55      0.94      0.49      0.72      0.50       785\n",
      "          2       0.76      0.91      0.46      0.83      0.64      0.43      6224\n",
      "          3       0.51      0.22      0.94      0.31      0.46      0.20      2026\n",
      "          4       0.20      0.09      0.98      0.12      0.29      0.08       480\n",
      "\n",
      "avg / total       0.65      0.69      0.63      0.65      0.59      0.37      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7046768260641093\n",
      "f-score: 0.7046768260641093\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.46      0.49      0.94      0.48      0.68      0.44       853\n",
      "          2       0.80      0.88      0.48      0.84      0.65      0.44      6684\n",
      "          3       0.33      0.26      0.92      0.29      0.49      0.23      1209\n",
      "          4       0.29      0.10      0.98      0.15      0.32      0.09       769\n",
      "\n",
      "avg / total       0.67      0.70      0.62      0.68      0.61      0.38      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.711823436678928\n",
      "f-score: 0.711823436678928\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.55      0.46      0.96      0.50      0.67      0.42       933\n",
      "          2       0.78      0.91      0.41      0.84      0.61      0.39      6645\n",
      "          3       0.37      0.19      0.93      0.25      0.42      0.16      1675\n",
      "          4       0.07      0.05      0.98      0.06      0.22      0.04       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6871978137481606\n",
      "f-score: 0.6871978137481606\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.55      0.94      0.53      0.71      0.49      1031\n",
      "          2       0.79      0.87      0.51      0.83      0.67      0.46      6399\n",
      "          3       0.35      0.22      0.93      0.27      0.45      0.19      1495\n",
      "          4       0.19      0.13      0.96      0.15      0.35      0.11       589\n",
      "\n",
      "avg / total       0.65      0.69      0.65      0.66      0.62      0.40      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6958166911919277\n",
      "f-score: 0.6958166911919277\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.60      0.93      0.56      0.74      0.53      1157\n",
      "          2       0.81      0.85      0.56      0.83      0.69      0.49      6600\n",
      "          3       0.29      0.23      0.92      0.26      0.46      0.20      1156\n",
      "          4       0.13      0.08      0.96      0.10      0.27      0.07       601\n",
      "\n",
      "avg / total       0.67      0.70      0.67      0.68      0.64      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7193904361534419\n",
      "f-score: 0.7193904361534419\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.41      0.47      0.95      0.44      0.67      0.43       642\n",
      "          2       0.79      0.91      0.40      0.85      0.60      0.38      6776\n",
      "          3       0.45      0.20      0.95      0.28      0.44      0.18      1716\n",
      "          4       0.16      0.09      0.98      0.12      0.30      0.08       381\n",
      "\n",
      "avg / total       0.68      0.72      0.56      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7104571728849185\n",
      "f-score: 0.7104571728849185\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.54      0.93      0.51      0.71      0.49       974\n",
      "          2       0.88      0.80      0.59      0.84      0.68      0.48      7520\n",
      "          3       0.17      0.32      0.87      0.22      0.53      0.26       697\n",
      "          4       0.08      0.07      0.97      0.07      0.26      0.06       324\n",
      "\n",
      "avg / total       0.76      0.71      0.66      0.73      0.66      0.45      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7130846032580137\n",
      "f-score: 0.7130846032580137\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.57      0.60      0.93      0.59      0.75      0.54      1247\n",
      "          2       0.81      0.87      0.54      0.84      0.68      0.48      6585\n",
      "          3       0.33      0.22      0.92      0.27      0.45      0.19      1462\n",
      "          4       0.10      0.09      0.98      0.10      0.30      0.08       221\n",
      "\n",
      "avg / total       0.69      0.71      0.66      0.70      0.65      0.43      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6694692590646348\n",
      "f-score: 0.6694692590646348\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.60      0.92      0.54      0.74      0.53      1129\n",
      "          2       0.78      0.84      0.52      0.81      0.66      0.45      6348\n",
      "          3       0.30      0.20      0.93      0.24      0.43      0.17      1285\n",
      "          4       0.20      0.10      0.96      0.14      0.32      0.09       753\n",
      "\n",
      "avg / total       0.63      0.67      0.66      0.65      0.61      0.40      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6890173410404624\n",
      "f-score: 0.6890173410404624\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.57      0.93      0.54      0.73      0.51      1085\n",
      "          2       0.79      0.87      0.50      0.82      0.66      0.45      6437\n",
      "          3       0.41      0.19      0.94      0.26      0.42      0.16      1657\n",
      "          4       0.10      0.14      0.96      0.12      0.36      0.12       336\n",
      "\n",
      "avg / total       0.66      0.69      0.64      0.67      0.62      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6895428271150814\n",
      "f-score: 0.6895428271150814\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.55      0.93      0.48      0.72      0.50       785\n",
      "          2       0.76      0.91      0.47      0.83      0.65      0.44      6224\n",
      "          3       0.52      0.22      0.95      0.31      0.45      0.19      2026\n",
      "          4       0.19      0.10      0.98      0.13      0.31      0.09       480\n",
      "\n",
      "avg / total       0.66      0.69      0.63      0.65      0.60      0.38      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.6986862848134524\n",
      "f-score: 0.6986862848134524\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.46      0.51      0.94      0.48      0.69      0.46       853\n",
      "          2       0.80      0.87      0.48      0.83      0.65      0.44      6684\n",
      "          3       0.32      0.26      0.92      0.29      0.49      0.23      1209\n",
      "          4       0.23      0.09      0.97      0.13      0.30      0.08       769\n",
      "\n",
      "avg / total       0.66      0.70      0.62      0.68      0.60      0.38      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7104571728849185\n",
      "f-score: 0.7104571728849185\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.55      0.47      0.96      0.51      0.67      0.43       933\n",
      "          2       0.78      0.90      0.41      0.83      0.61      0.38      6645\n",
      "          3       0.39      0.19      0.93      0.26      0.42      0.17      1675\n",
      "          4       0.11      0.08      0.98      0.09      0.29      0.07       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6823628337187303\n",
      "f-score: 0.6823628337187303\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.53      0.94      0.52      0.71      0.48      1031\n",
      "          2       0.79      0.86      0.53      0.82      0.67      0.47      6399\n",
      "          3       0.33      0.22      0.92      0.26      0.45      0.19      1495\n",
      "          4       0.20      0.16      0.96      0.17      0.39      0.14       589\n",
      "\n",
      "avg / total       0.65      0.68      0.66      0.66      0.62      0.41      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6949758250998529\n",
      "f-score: 0.6949758250998529\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.60      0.91      0.54      0.74      0.53      1157\n",
      "          2       0.81      0.85      0.56      0.83      0.69      0.49      6600\n",
      "          3       0.29      0.21      0.93      0.24      0.44      0.18      1156\n",
      "          4       0.16      0.10      0.96      0.12      0.31      0.09       601\n",
      "\n",
      "avg / total       0.67      0.69      0.67      0.68      0.64      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7212821860220704\n",
      "f-score: 0.7212821860220704\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.51      0.95      0.46      0.70      0.46       642\n",
      "          2       0.79      0.91      0.41      0.85      0.61      0.39      6776\n",
      "          3       0.47      0.19      0.95      0.27      0.43      0.17      1716\n",
      "          4       0.17      0.10      0.98      0.13      0.32      0.09       381\n",
      "\n",
      "avg / total       0.68      0.72      0.56      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7012086179716237\n",
      "f-score: 0.7012086179716237\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.47      0.53      0.93      0.50      0.70      0.47       974\n",
      "          2       0.88      0.79      0.59      0.83      0.68      0.47      7520\n",
      "          3       0.15      0.30      0.87      0.20      0.51      0.24       697\n",
      "          4       0.06      0.06      0.97      0.06      0.24      0.05       324\n",
      "\n",
      "avg / total       0.76      0.70      0.66      0.72      0.66      0.44      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7096163951655281\n",
      "f-score: 0.7096163951655281\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.58      0.58      0.94      0.58      0.74      0.53      1247\n",
      "          2       0.81      0.86      0.54      0.83      0.68      0.48      6585\n",
      "          3       0.32      0.23      0.91      0.27      0.46      0.20      1462\n",
      "          4       0.09      0.07      0.98      0.08      0.27      0.06       221\n",
      "\n",
      "avg / total       0.69      0.71      0.66      0.70      0.65      0.44      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6687335785601681\n",
      "f-score: 0.6687335785601681\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.59      0.91      0.53      0.73      0.52      1129\n",
      "          2       0.78      0.85      0.52      0.81      0.66      0.45      6348\n",
      "          3       0.30      0.18      0.93      0.23      0.41      0.16      1285\n",
      "          4       0.20      0.12      0.96      0.15      0.35      0.11       753\n",
      "\n",
      "avg / total       0.63      0.67      0.66      0.65      0.61      0.39      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6735680504466631\n",
      "f-score: 0.6735680504466631\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.55      0.93      0.52      0.71      0.49      1085\n",
      "          2       0.79      0.84      0.53      0.81      0.67      0.46      6437\n",
      "          3       0.38      0.22      0.92      0.28      0.45      0.19      1657\n",
      "          4       0.10      0.15      0.95      0.12      0.38      0.13       336\n",
      "\n",
      "avg / total       0.66      0.67      0.66      0.66      0.62      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6888071466106148\n",
      "f-score: 0.6888071466106148\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.53      0.93      0.47      0.71      0.48       785\n",
      "          2       0.76      0.91      0.46      0.83      0.65      0.44      6224\n",
      "          3       0.52      0.23      0.94      0.32      0.46      0.20      2026\n",
      "          4       0.16      0.07      0.98      0.10      0.27      0.07       480\n",
      "\n",
      "avg / total       0.65      0.69      0.63      0.65      0.59      0.37      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7138202837624803\n",
      "f-score: 0.7138202837624804\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.51      0.95      0.50      0.69      0.46       853\n",
      "          2       0.80      0.90      0.46      0.84      0.64      0.43      6684\n",
      "          3       0.35      0.26      0.93      0.29      0.49      0.22      1209\n",
      "          4       0.29      0.08      0.98      0.13      0.29      0.08       769\n",
      "\n",
      "avg / total       0.67      0.71      0.61      0.69      0.60      0.38      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7114030478192328\n",
      "f-score: 0.7114030478192328\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.55      0.45      0.96      0.50      0.66      0.41       933\n",
      "          2       0.78      0.90      0.41      0.84      0.61      0.39      6645\n",
      "          3       0.40      0.22      0.93      0.28      0.45      0.19      1675\n",
      "          4       0.07      0.05      0.98      0.06      0.21      0.04       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.684359890687408\n",
      "f-score: 0.684359890687408\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.50      0.53      0.94      0.52      0.71      0.48      1031\n",
      "          2       0.79      0.87      0.52      0.83      0.67      0.46      6399\n",
      "          3       0.36      0.23      0.92      0.28      0.46      0.19      1495\n",
      "          4       0.18      0.13      0.96      0.15      0.35      0.11       589\n",
      "\n",
      "avg / total       0.65      0.68      0.65      0.66      0.62      0.40      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6882488963632541\n",
      "f-score: 0.6882488963632541\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.62      0.92      0.56      0.75      0.55      1157\n",
      "          2       0.81      0.83      0.57      0.82      0.69      0.49      6600\n",
      "          3       0.30      0.22      0.93      0.26      0.45      0.19      1156\n",
      "          4       0.15      0.13      0.95      0.14      0.36      0.12       601\n",
      "\n",
      "avg / total       0.67      0.69      0.68      0.68      0.65      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7191802417235943\n",
      "f-score: 0.7191802417235943\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.41      0.52      0.95      0.46      0.70      0.47       642\n",
      "          2       0.79      0.90      0.41      0.84      0.61      0.39      6776\n",
      "          3       0.47      0.20      0.95      0.28      0.43      0.17      1716\n",
      "          4       0.17      0.11      0.98      0.13      0.32      0.10       381\n",
      "\n",
      "avg / total       0.68      0.72      0.57      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7133998949027851\n",
      "f-score: 0.7133998949027851\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.54      0.93      0.51      0.71      0.48       974\n",
      "          2       0.88      0.80      0.58      0.84      0.69      0.48      7520\n",
      "          3       0.16      0.29      0.88      0.21      0.51      0.24       697\n",
      "          4       0.09      0.08      0.97      0.09      0.28      0.07       324\n",
      "\n",
      "avg / total       0.76      0.71      0.66      0.73      0.66      0.45      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7060430898581188\n",
      "f-score: 0.7060430898581188\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.57      0.59      0.93      0.58      0.74      0.53      1247\n",
      "          2       0.81      0.85      0.55      0.83      0.68      0.48      6585\n",
      "          3       0.33      0.24      0.91      0.28      0.47      0.20      1462\n",
      "          4       0.08      0.08      0.98      0.08      0.27      0.07       221\n",
      "\n",
      "avg / total       0.69      0.71      0.66      0.69      0.65      0.44      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6672622175512349\n",
      "f-score: 0.6672622175512349\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.47      0.57      0.91      0.52      0.72      0.50      1129\n",
      "          2       0.77      0.85      0.51      0.81      0.66      0.44      6348\n",
      "          3       0.29      0.18      0.93      0.22      0.41      0.15      1285\n",
      "          4       0.20      0.11      0.96      0.14      0.32      0.10       753\n",
      "\n",
      "avg / total       0.63      0.67      0.65      0.64      0.60      0.38      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6905937992643195\n",
      "f-score: 0.6905937992643195\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.54      0.94      0.53      0.71      0.49      1085\n",
      "          2       0.79      0.87      0.50      0.83      0.66      0.45      6437\n",
      "          3       0.43      0.21      0.94      0.28      0.44      0.18      1657\n",
      "          4       0.11      0.15      0.95      0.12      0.37      0.13       336\n",
      "\n",
      "avg / total       0.67      0.69      0.65      0.67      0.62      0.40      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.687651077246453\n",
      "f-score: 0.687651077246453\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.42      0.53      0.93      0.47      0.71      0.48       785\n",
      "          2       0.76      0.90      0.46      0.83      0.65      0.43      6224\n",
      "          3       0.52      0.23      0.94      0.32      0.47      0.20      2026\n",
      "          4       0.16      0.08      0.98      0.10      0.27      0.07       480\n",
      "\n",
      "avg / total       0.65      0.69      0.63      0.65      0.59      0.37      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7031003678402522\n",
      "f-score: 0.7031003678402522\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.47      0.53      0.94      0.50      0.70      0.47       853\n",
      "          2       0.80      0.87      0.49      0.84      0.66      0.45      6684\n",
      "          3       0.33      0.27      0.92      0.29      0.49      0.23      1209\n",
      "          4       0.28      0.11      0.97      0.16      0.33      0.10       769\n",
      "\n",
      "avg / total       0.67      0.70      0.63      0.68      0.61      0.39      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7104571728849185\n",
      "f-score: 0.7104571728849185\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.53      0.45      0.96      0.49      0.66      0.41       933\n",
      "          2       0.78      0.90      0.40      0.84      0.60      0.38      6645\n",
      "          3       0.40      0.19      0.94      0.26      0.42      0.16      1675\n",
      "          4       0.11      0.09      0.98      0.10      0.29      0.08       262\n",
      "\n",
      "avg / total       0.67      0.71      0.57      0.68      0.57      0.34      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6803657767500526\n",
      "f-score: 0.6803657767500526\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.55      0.94      0.53      0.72      0.49      1031\n",
      "          2       0.79      0.86      0.53      0.82      0.67      0.47      6399\n",
      "          3       0.32      0.22      0.91      0.26      0.45      0.19      1495\n",
      "          4       0.20      0.14      0.96      0.16      0.36      0.12       589\n",
      "\n",
      "avg / total       0.65      0.68      0.66      0.66      0.62      0.40      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6965524490224931\n",
      "f-score: 0.6965524490224931\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.60      0.92      0.55      0.74      0.54      1157\n",
      "          2       0.81      0.85      0.55      0.83      0.69      0.48      6600\n",
      "          3       0.31      0.22      0.93      0.25      0.45      0.19      1156\n",
      "          4       0.16      0.11      0.96      0.13      0.33      0.10       601\n",
      "\n",
      "avg / total       0.67      0.70      0.67      0.68      0.64      0.43      9514\n",
      "\n",
      "[(1, 59442), (2, 59442), (3, 59442), (4, 59442)]\n",
      "For fold 1:\n",
      "Accuracy: 0.7225433526011561\n",
      "f-score: 0.7225433526011561\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.41      0.50      0.95      0.45      0.69      0.45       642\n",
      "          2       0.79      0.91      0.41      0.85      0.61      0.39      6776\n",
      "          3       0.47      0.19      0.95      0.27      0.43      0.17      1716\n",
      "          4       0.19      0.12      0.98      0.14      0.34      0.10       381\n",
      "\n",
      "avg / total       0.68      0.72      0.56      0.69      0.57      0.34      9515\n",
      "\n",
      "[(1, 58698), (2, 58698), (3, 58698), (4, 58698)]\n",
      "For fold 2:\n",
      "Accuracy: 0.7017341040462428\n",
      "f-score: 0.7017341040462428\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.46      0.52      0.93      0.49      0.70      0.47       974\n",
      "          2       0.88      0.79      0.58      0.83      0.68      0.47      7520\n",
      "          3       0.16      0.31      0.87      0.21      0.52      0.26       697\n",
      "          4       0.06      0.06      0.97      0.06      0.23      0.05       324\n",
      "\n",
      "avg / total       0.75      0.70      0.65      0.72      0.65      0.44      9515\n",
      "\n",
      "[(1, 59633), (2, 59633), (3, 59633), (4, 59633)]\n",
      "For fold 3:\n",
      "Accuracy: 0.7066736731476616\n",
      "f-score: 0.7066736731476616\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.58      0.58      0.94      0.58      0.73      0.52      1247\n",
      "          2       0.81      0.86      0.54      0.83      0.68      0.48      6585\n",
      "          3       0.33      0.24      0.91      0.28      0.47      0.20      1462\n",
      "          4       0.10      0.10      0.98      0.10      0.31      0.09       221\n",
      "\n",
      "avg / total       0.69      0.71      0.66      0.70      0.65      0.43      9515\n",
      "\n",
      "[(1, 59870), (2, 59870), (3, 59870), (4, 59870)]\n",
      "For fold 4:\n",
      "Accuracy: 0.6660010509721492\n",
      "f-score: 0.6660010509721492\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.59      0.91      0.53      0.74      0.53      1129\n",
      "          2       0.78      0.84      0.52      0.81      0.66      0.45      6348\n",
      "          3       0.29      0.18      0.93      0.22      0.41      0.15      1285\n",
      "          4       0.18      0.11      0.96      0.14      0.32      0.10       753\n",
      "\n",
      "avg / total       0.63      0.67      0.66      0.64      0.61      0.39      9515\n",
      "\n",
      "[(1, 59781), (2, 59781), (3, 59781), (4, 59781)]\n",
      "For fold 5:\n",
      "Accuracy: 0.6910141881240147\n",
      "f-score: 0.6910141881240147\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.53      0.94      0.53      0.71      0.48      1085\n",
      "          2       0.78      0.88      0.49      0.83      0.66      0.45      6437\n",
      "          3       0.40      0.19      0.94      0.26      0.42      0.16      1657\n",
      "          4       0.09      0.11      0.96      0.10      0.32      0.10       336\n",
      "\n",
      "avg / total       0.66      0.69      0.64      0.67      0.61      0.39      9515\n",
      "\n",
      "[(1, 59994), (2, 59994), (3, 59994), (4, 59994)]\n",
      "For fold 6:\n",
      "Accuracy: 0.6917498686284813\n",
      "f-score: 0.6917498686284813\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.44      0.56      0.94      0.49      0.72      0.50       785\n",
      "          2       0.76      0.90      0.47      0.83      0.65      0.44      6224\n",
      "          3       0.53      0.25      0.94      0.34      0.48      0.22      2026\n",
      "          4       0.17      0.08      0.98      0.11      0.29      0.07       480\n",
      "\n",
      "avg / total       0.66      0.69      0.64      0.66      0.60      0.38      9515\n",
      "\n",
      "[(1, 59534), (2, 59534), (3, 59534), (4, 59534)]\n",
      "For fold 7:\n",
      "Accuracy: 0.7042564372044141\n",
      "f-score: 0.7042564372044141\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.46      0.52      0.94      0.49      0.70      0.47       853\n",
      "          2       0.80      0.87      0.50      0.84      0.66      0.45      6684\n",
      "          3       0.34      0.29      0.92      0.31      0.51      0.25      1209\n",
      "          4       0.30      0.11      0.98      0.16      0.33      0.10       769\n",
      "\n",
      "avg / total       0.67      0.70      0.63      0.68      0.62      0.40      9515\n",
      "\n",
      "[(1, 59573), (2, 59573), (3, 59573), (4, 59573)]\n",
      "For fold 8:\n",
      "Accuracy: 0.7128744088281661\n",
      "f-score: 0.7128744088281661\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.57      0.46      0.96      0.51      0.67      0.42       933\n",
      "          2       0.78      0.90      0.42      0.84      0.61      0.39      6645\n",
      "          3       0.38      0.22      0.92      0.27      0.45      0.19      1675\n",
      "          4       0.12      0.07      0.98      0.09      0.27      0.06       262\n",
      "\n",
      "avg / total       0.67      0.71      0.58      0.68      0.58      0.35      9515\n",
      "\n",
      "[(1, 59819), (2, 59819), (3, 59819), (4, 59819)]\n",
      "For fold 9:\n",
      "Accuracy: 0.6898255202858945\n",
      "f-score: 0.6898255202858945\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.54      0.94      0.53      0.71      0.49      1031\n",
      "          2       0.79      0.87      0.51      0.83      0.67      0.46      6399\n",
      "          3       0.35      0.21      0.93      0.27      0.45      0.18      1495\n",
      "          4       0.22      0.15      0.97      0.18      0.38      0.13       589\n",
      "\n",
      "avg / total       0.65      0.69      0.65      0.67      0.62      0.40      9514\n",
      "\n",
      "[(1, 59618), (2, 59618), (3, 59618), (4, 59618)]\n",
      "For fold 10:\n",
      "Accuracy: 0.6950809333613622\n",
      "f-score: 0.6950809333613622\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.52      0.60      0.92      0.56      0.75      0.54      1157\n",
      "          2       0.81      0.85      0.56      0.83      0.69      0.49      6600\n",
      "          3       0.28      0.21      0.93      0.24      0.44      0.18      1156\n",
      "          4       0.18      0.13      0.96      0.15      0.35      0.11       601\n",
      "\n",
      "avg / total       0.67      0.70      0.67      0.68      0.64      0.43      9514\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 576x396 with 0 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from sklearn.model_selection import KFold\n",
    "from sklearn import preprocessing\n",
    "from imblearn.over_sampling import SMOTENC\n",
    "from sklearn.metrics import f1_score\n",
    "from imblearn.metrics import classification_report_imbalanced\n",
    "from yellowbrick.classifier import ROCAUC\n",
    "# explicitly require this experimental feature\n",
    "from sklearn.experimental import enable_iterative_imputer  # noqa\n",
    "# now you can import normally from sklearn.impute\n",
    "from sklearn.impute import IterativeImputer\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from numpy import loadtxt\n",
    "import os\n",
    "os.environ['KMP_DUPLICATE_LIB_OK']='True'\n",
    "from xgboost import XGBClassifier\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.metrics import accuracy_score\n",
    "import io \n",
    "\n",
    "classes=['Death','Home','Nursing Home','Rehabilitation']\n",
    "\n",
    "\n",
    "\n",
    "kf = KFold(n_splits=10)\n",
    "\n",
    "\n",
    "for i in range (1,11):\n",
    "\n",
    "    for fold, (train_index, test_index) in enumerate(kf.split(X), 1):\n",
    "        X_train = X.iloc[train_index]\n",
    "        y_train = y.iloc[train_index]  # Based on your code, you might need a ravel call here, but I would look into how you're generating your y\n",
    "        X_test = X.iloc[test_index]\n",
    "        y_test = y.iloc[test_index]  # See comment on ravel and  y_train\n",
    "    \n",
    "    \n",
    "    #------------------------------IMPUTE Training Set------------------------------------\n",
    "\n",
    "        # Use MICE to fill in each row's missing features\n",
    "        X_train = pd.DataFrame(IterativeImputer(verbose=False, sample_posterior=True).fit_transform(X_train))\n",
    "        X_train.columns = df_cols\n",
    "\n",
    "    #------------------------------IMPUTE Testing Set------------------------------------ \n",
    "\n",
    "        # Use MICE to fill in each row's missing features\n",
    "        X_test = pd.DataFrame(IterativeImputer(verbose=False, sample_posterior=True).fit_transform(X_test))\n",
    "        X_test.columns = df_cols\n",
    "\n",
    "\n",
    "    #------------------------------Standardize Testing Set------------------------------------\n",
    "\n",
    "        std_scale = preprocessing.StandardScaler().fit(X_train[cols_to_norm])\n",
    "        X_train[cols_to_norm] = std_scale.transform(X_train[cols_to_norm])\n",
    "        X_test[cols_to_norm] = std_scale.transform(X_test[cols_to_norm])\n",
    "    #------------------------------------------------------------------------------------------\n",
    "\n",
    "     # Hyperparameters are optimized using hyperopt\n",
    "\n",
    "        #sm = SMOTE()\n",
    "\n",
    "        sm = SMOTENC(random_state=50, categorical_features=[1,2,3,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61])        \n",
    "        X_train_oversampled, y_train_oversampled = sm.fit_sample(X_train, y_train)\n",
    "        print(sorted(Counter(y_train_oversampled).items()))\n",
    "        model = XGBClassifier(max_depth=8, gamma=0.063, colsample_bytree=0.71) \n",
    "        model.fit(X_train_oversampled, y_train_oversampled)  \n",
    "        y_pred = model.predict(X_test.values)\n",
    "        visualizer = ROCAUC(model, classes=classes)\n",
    "        visualizer.fit(X_train_oversampled, y_train_oversampled)  # Fit the training data to the visualizer\n",
    "        visualizer.score(X_test.values, y_test)  # Evaluate the model on the test data\n",
    "        visualizer.poof(\"XB_SMOTENC_{}_{}.pdf\".format(i, fold), clear_figure=True) \n",
    "        print(f'For fold {fold}:')\n",
    "        print(f'Accuracy: {model.score(X_test.values, y_test)}')\n",
    "        f1=f1_score(y_test, y_pred, average='micro')\n",
    "        print(f'f-score: {f1}')\n",
    "        print(classification_report_imbalanced(y_test, y_pred))\n",
    "        K= classification_report_imbalanced(y_test, y_pred)\n",
    "        df = pd.read_fwf(io.StringIO(K))\n",
    "        df.loc[\"1\":\"1\",\"pre\":\"sup\"].to_csv(\"XGB-SMOTENC-D.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "        df.loc[\"2\":\"2\",\"pre\":\"sup\"].to_csv(\"XGB-SMOTENC-H.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "        df.loc[\"3\":\"3\",\"pre\":\"sup\"].to_csv(\"XGB-SMOTENC-N.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "        df.loc[\"4\":\"4\",\"pre\":\"sup\"].to_csv(\"XGB-SMOTENC-R.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "        df.iloc[6:7,:].to_csv(\"XGB-SMOTENC-avg.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "\n",
    "        #\n",
    "\n",
    "\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}