[ad9713]: / Mixed / LR-Mixed-Main.ipynb

Download this file

4289 lines (4288 with data), 159.5 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "4pSvBuCv6lMC",
    "outputId": "7addb939-067e-4915-ab6a-1c72968c36ce"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ]
     },
     "metadata": {
      "tags": []
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Import libraries\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import getpass\n",
    "import pdvega\n",
    "import plotly.graph_objs as go\n",
    "\n",
    "from plotly.offline import iplot, init_notebook_mode\n",
    "import plotly.io as pio\n",
    "from plotly.graph_objs import *\n",
    "\n",
    "# for configuring connection \n",
    "from configobj import ConfigObj\n",
    "import os\n",
    "\n",
    "%matplotlib inline\n",
    "\n",
    "\n",
    "import os\n",
    "\n",
    "\n",
    "from sklearn import linear_model\n",
    "from sklearn import metrics\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "#configure the notebook for use in offline mode\n",
    "init_notebook_mode(connected=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "SuO51zoQ6lME",
    "outputId": "416ccf6e-d866-4f7f-d009-ec5b027c87f7"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Unnamed: 0</th>\n",
       "      <th>hospitalid</th>\n",
       "      <th>sodium</th>\n",
       "      <th>electivesurgery</th>\n",
       "      <th>vent</th>\n",
       "      <th>dialysis</th>\n",
       "      <th>gcs</th>\n",
       "      <th>urine</th>\n",
       "      <th>wbc</th>\n",
       "      <th>temperature</th>\n",
       "      <th>...</th>\n",
       "      <th>m11_True</th>\n",
       "      <th>m12_True</th>\n",
       "      <th>m13_True</th>\n",
       "      <th>m14_True</th>\n",
       "      <th>m15_True</th>\n",
       "      <th>m16_True</th>\n",
       "      <th>m17_True</th>\n",
       "      <th>m18_True</th>\n",
       "      <th>m19_True</th>\n",
       "      <th>m20_True</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>59.0</td>\n",
       "      <td>139.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>14.7</td>\n",
       "      <td>36.1</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>73.0</td>\n",
       "      <td>134.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>14.1</td>\n",
       "      <td>39.3</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>73.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>34.8</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>63.0</td>\n",
       "      <td>137.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>10.9</td>\n",
       "      <td>36.6</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>63.0</td>\n",
       "      <td>135.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>5.9</td>\n",
       "      <td>35.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 85 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   Unnamed: 0  hospitalid  sodium  electivesurgery  vent  dialysis   gcs  \\\n",
       "0           0        59.0   139.0             -1.0   0.0       0.0  15.0   \n",
       "1           1        73.0   134.0             -1.0   0.0       0.0  13.0   \n",
       "2           2        73.0    -1.0              1.0   1.0       0.0  15.0   \n",
       "3           3        63.0   137.0             -1.0   0.0       0.0  15.0   \n",
       "4           4        63.0   135.0             -1.0   0.0       0.0  15.0   \n",
       "\n",
       "   urine   wbc  temperature  ...  m11_True  m12_True  m13_True  m14_True  \\\n",
       "0   -1.0  14.7         36.1  ...         1         0         0         1   \n",
       "1   -1.0  14.1         39.3  ...         1         0         0         1   \n",
       "2   -1.0   8.0         34.8  ...         0         0         1         0   \n",
       "3   -1.0  10.9         36.6  ...         1         0         1         1   \n",
       "4   -1.0   5.9         35.0  ...         0         0         1         0   \n",
       "\n",
       "   m15_True  m16_True  m17_True  m18_True  m19_True  m20_True  \n",
       "0         1         0         0         0         1         0  \n",
       "1         1         0         0         0         1         0  \n",
       "2         0         1         0         1         0         0  \n",
       "3         1         0         0         1         1         0  \n",
       "4         0         0         0         1         0         0  \n",
       "\n",
       "[5 rows x 85 columns]"
      ]
     },
     "execution_count": 15,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df= pd.read_csv(\"Analysis.csv\")\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "DY_YHpZt6lMF"
   },
   "outputs": [],
   "source": [
    "del df['hospitalid']\n",
    "\n",
    "df = df.drop(df.columns[[0]], axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ADb9y6cp6lMF",
    "outputId": "936cfb4e-e475-416e-ed8b-5dd9011709c5"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "sodium                    0\n",
       "electivesurgery           0\n",
       "vent                      0\n",
       "dialysis                  0\n",
       "gcs                       0\n",
       "urine                     0\n",
       "wbc                       0\n",
       "temperature               0\n",
       "respiratoryrate           0\n",
       "heartrate                 0\n",
       "meanbp                    0\n",
       "creatinine                0\n",
       "ph                        0\n",
       "hematocrit                0\n",
       "albumin                   0\n",
       "pao2                      0\n",
       "pco2                      0\n",
       "bun                       0\n",
       "glucose                   0\n",
       "bilirubin                 0\n",
       "fio2                      0\n",
       "age                       0\n",
       "thrombolytics             0\n",
       "aids                      0\n",
       "hepaticfailure            0\n",
       "lymphoma                  0\n",
       "metastaticcancer          0\n",
       "leukemia                  0\n",
       "immunosuppression         0\n",
       "cirrhosis                 0\n",
       "                         ..\n",
       "diaggroup_Neuro           0\n",
       "diaggroup_Other           0\n",
       "diaggroup_Overdose        0\n",
       "diaggroup_PNA             0\n",
       "diaggroup_RespMedOther    0\n",
       "diaggroup_Sepsis          0\n",
       "diaggroup_Trauma          0\n",
       "diaggroup_ValveDz         0\n",
       "gender_Male               0\n",
       "gender_Other              0\n",
       "m1_True                   0\n",
       "m2_True                   0\n",
       "m3_True                   0\n",
       "m4_True                   0\n",
       "m5_True                   0\n",
       "m6_True                   0\n",
       "m7_True                   0\n",
       "m8_True                   0\n",
       "m9_True                   0\n",
       "m10_True                  0\n",
       "m11_True                  0\n",
       "m12_True                  0\n",
       "m13_True                  0\n",
       "m14_True                  0\n",
       "m15_True                  0\n",
       "m16_True                  0\n",
       "m17_True                  0\n",
       "m18_True                  0\n",
       "m19_True                  0\n",
       "m20_True                  0\n",
       "Length: 83, dtype: int64"
      ]
     },
     "execution_count": 18,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "missing_values_count = df.isnull().sum()\n",
    "missing_values_count"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "l3m5jhLa6lMF"
   },
   "source": [
    "**We moved all the pre-processing including splitting>imputation>Standardization to the CV iterations**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "jpDbj7Fj6lMG"
   },
   "outputs": [],
   "source": [
    "cols_to_norm=['gcs', 'urine', 'wbc', 'sodium',\n",
    "       'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n",
    "       'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n",
    "       'bilirubin', 'fio2', 'age', 'offset']\n",
    "\n",
    "X=df.drop('destcopy', 1)\n",
    "y=df['destcopy']\n",
    "df_cols = list(X)     #fancy impute removes column names."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "vRhjfNFs6lMG",
    "outputId": "c7dcc7dd-a08d-4fc4-eae7-49376505cc68"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['sodium', 'electivesurgery', 'vent', 'dialysis', 'gcs', 'urine', 'wbc',\n",
       "       'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n",
       "       'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n",
       "       'bilirubin', 'fio2', 'age', 'thrombolytics', 'aids', 'hepaticfailure',\n",
       "       'lymphoma', 'metastaticcancer', 'leukemia', 'immunosuppression',\n",
       "       'cirrhosis', 'readmit', 'offset', 'destcopy', 'admitsource_1.0',\n",
       "       'admitsource_2.0', 'admitsource_3.0', 'admitsource_4.0',\n",
       "       'admitsource_5.0', 'admitsource_6.0', 'admitsource_7.0',\n",
       "       'admitsource_8.0', 'diaggroup_ARF', 'diaggroup_Asthma-Emphys',\n",
       "       'diaggroup_CABG', 'diaggroup_CHF', 'diaggroup_CVA', 'diaggroup_CVOther',\n",
       "       'diaggroup_CardiacArrest', 'diaggroup_ChestPainUnknown',\n",
       "       'diaggroup_Coma', 'diaggroup_DKA', 'diaggroup_GIBleed',\n",
       "       'diaggroup_GIObstruction', 'diaggroup_Neuro', 'diaggroup_Other',\n",
       "       'diaggroup_Overdose', 'diaggroup_PNA', 'diaggroup_RespMedOther',\n",
       "       'diaggroup_Sepsis', 'diaggroup_Trauma', 'diaggroup_ValveDz',\n",
       "       'gender_Male', 'gender_Other', 'm1_True', 'm2_True', 'm3_True',\n",
       "       'm4_True', 'm5_True', 'm6_True', 'm7_True', 'm8_True', 'm9_True',\n",
       "       'm10_True', 'm11_True', 'm12_True', 'm13_True', 'm14_True', 'm15_True',\n",
       "       'm16_True', 'm17_True', 'm18_True', 'm19_True', 'm20_True'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 20,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.columns"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "Q7W7zo1m6lMG"
   },
   "source": [
    "**Logistic Regression**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "XcxcPY866lMH"
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "7RVegpb-6lMH"
   },
   "outputs": [],
   "source": [
    "from collections import Counter"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "8qmztaJb6lMH",
    "outputId": "7652110b-dbf3-490d-f655-d4ab68ee478e"
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 9194), (2, 59442), (3, 12662), (4, 4335)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 1:\n",
      "Accuracy: 0.6286915396741987\n",
      "f-score: 0.6286915396741987\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.36      0.53      0.93      0.43      0.70      0.47       642\n",
      "          2       0.83      0.73      0.63      0.78      0.68      0.47      6776\n",
      "          3       0.37      0.32      0.88      0.35      0.53      0.27      1716\n",
      "          4       0.11      0.33      0.89      0.17      0.55      0.28       381\n",
      "\n",
      "avg / total       0.69      0.63      0.71      0.65      0.65      0.42      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8862), (2, 58698), (3, 13681), (4, 4392)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 2:\n",
      "Accuracy: 0.6316342616920652\n",
      "f-score: 0.6315291644771414\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.44      0.51      0.93      0.47      0.69      0.46       974\n",
      "          2       0.87      0.70      0.62      0.78      0.66      0.44      7520\n",
      "          3       0.17      0.26      0.90      0.20      0.48      0.21       697\n",
      "          4       0.05      0.19      0.87      0.08      0.41      0.16       324\n",
      "\n",
      "avg / total       0.75      0.63      0.68      0.68      0.64      0.41      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8589), (2, 59633), (3, 12916), (4, 4495)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 3:\n",
      "Accuracy: 0.6162900683131897\n",
      "f-score: 0.6162900683131897\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.59      0.91      0.54      0.73      0.52      1247\n",
      "          2       0.83      0.71      0.67      0.76      0.69      0.48      6585\n",
      "          3       0.31      0.27      0.89      0.29      0.49      0.22      1462\n",
      "          4       0.06      0.29      0.89      0.09      0.50      0.24       221\n",
      "\n",
      "avg / total       0.69      0.62      0.74      0.65      0.66      0.44      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8707), (2, 59870), (3, 13093), (4, 3963)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 4:\n",
      "Accuracy: 0.6191276931161325\n",
      "f-score: 0.6191276931161325\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.50      0.50      0.93      0.50      0.68      0.45      1129\n",
      "          2       0.76      0.79      0.52      0.78      0.64      0.42      6348\n",
      "          3       0.23      0.11      0.94      0.15      0.32      0.09      1285\n",
      "          4       0.16      0.27      0.88      0.20      0.48      0.22       753\n",
      "\n",
      "avg / total       0.61      0.62      0.65      0.61      0.59      0.36      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8751), (2, 59781), (3, 12721), (4, 4380)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 5:\n",
      "Accuracy: 0.6122963741460852\n",
      "f-score: 0.6122963741460852\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.51      0.93      0.50      0.69      0.45      1085\n",
      "          2       0.79      0.75      0.59      0.77      0.66      0.45      6437\n",
      "          3       0.37      0.21      0.92      0.26      0.44      0.18      1657\n",
      "          4       0.07      0.29      0.86      0.11      0.50      0.23       336\n",
      "\n",
      "avg / total       0.66      0.61      0.69      0.63      0.62      0.39      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 9051), (2, 59994), (3, 12352), (4, 4236)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 6:\n",
      "Accuracy: 0.6133473462953232\n",
      "f-score: 0.6133473462953232\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.36      0.56      0.91      0.43      0.71      0.49       785\n",
      "          2       0.79      0.77      0.61      0.78      0.69      0.48      6224\n",
      "          3       0.43      0.25      0.91      0.31      0.48      0.21      2026\n",
      "          4       0.12      0.26      0.90      0.16      0.48      0.22       480\n",
      "\n",
      "avg / total       0.64      0.61      0.72      0.62      0.63      0.41      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8983), (2, 59534), (3, 13169), (4, 3947)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 7:\n",
      "Accuracy: 0.6250131371518655\n",
      "f-score: 0.6249080399369417\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.44      0.53      0.93      0.48      0.70      0.47       853\n",
      "          2       0.83      0.73      0.65      0.77      0.69      0.47      6684\n",
      "          3       0.30      0.38      0.87      0.33      0.57      0.31      1209\n",
      "          4       0.17      0.25      0.89      0.20      0.47      0.21       769\n",
      "\n",
      "avg / total       0.67      0.62      0.72      0.65      0.66      0.43      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8903), (2, 59573), (3, 12703), (4, 4454)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 8:\n",
      "Accuracy: 0.5963215974776669\n",
      "f-score: 0.5963215974776669\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.48      0.46      0.95      0.47      0.66      0.41       933\n",
      "          2       0.81      0.70      0.62      0.75      0.66      0.44      6645\n",
      "          3       0.35      0.28      0.89      0.31      0.50      0.24      1675\n",
      "          4       0.06      0.36      0.85      0.11      0.55      0.29       262\n",
      "\n",
      "avg / total       0.68      0.60      0.71      0.63      0.63      0.40      9515\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8805), (2, 59819), (3, 12883), (4, 4127)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 9:\n",
      "Accuracy: 0.6217153668278327\n",
      "f-score: 0.6217153668278327\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.49      0.49      0.94      0.49      0.68      0.44      1031\n",
      "          2       0.81      0.76      0.63      0.78      0.69      0.48      6399\n",
      "          3       0.34      0.23      0.92      0.27      0.46      0.19      1495\n",
      "          4       0.14      0.34      0.86      0.20      0.54      0.28       589\n",
      "\n",
      "avg / total       0.66      0.62      0.72      0.63      0.64      0.42      9514\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:36: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:37: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\pandas\\core\\indexing.py:543: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:47: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\ipykernel_launcher.py:50: SettingWithCopyWarning:\n",
      "\n",
      "\n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "hi\n",
      "[(1, 8679), (2, 59618), (3, 13222), (4, 4115)]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n",
      "\n",
      "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n",
      "\n",
      "C:\\Users\\llois\\Anaconda\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n",
      "\n",
      "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For fold 10:\n",
      "Accuracy: 0.6359049821315955\n",
      "f-score: 0.6359049821315955\n",
      "                   pre       rec       spe        f1       geo       iba       sup\n",
      "\n",
      "          1       0.51      0.57      0.92      0.54      0.72      0.51      1157\n",
      "          2       0.81      0.76      0.60      0.79      0.68      0.46      6600\n",
      "          3       0.30      0.17      0.95      0.21      0.40      0.14      1156\n",
      "          4       0.11      0.26      0.86      0.16      0.47      0.21       601\n",
      "\n",
      "avg / total       0.67      0.64      0.70      0.65      0.63      0.41      9514\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<Figure size 432x288 with 0 Axes>"
      ]
     },
     "metadata": {
      "tags": []
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "from sklearn.model_selection import KFold\n",
    "from sklearn import preprocessing\n",
    "from imblearn.over_sampling import SMOTE\n",
    "from imblearn.over_sampling import SMOTENC\n",
    "from sklearn.metrics import f1_score\n",
    "from imblearn.metrics import classification_report_imbalanced\n",
    "from yellowbrick.classifier import ROCAUC\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from sklearn.model_selection import cross_val_score, StratifiedKFold\n",
    "from sklearn.ensemble import RandomForestClassifier\n",
    "from sklearn.metrics import make_scorer\n",
    "import xgboost as xgb\n",
    "import lightgbm as lgbm\n",
    "from collections import Counter\n",
    "from sklearn.cluster import KMeans\n",
    "\n",
    "\n",
    "\n",
    "classes=['Death','Home','Nursing Home','Rehabilitation']\n",
    "\n",
    "\n",
    "kf = KFold(n_splits=10)\n",
    "\n",
    "for fold, (train_index, test_index) in enumerate(kf.split(X), 1):\n",
    "    X_train = X.iloc[train_index]\n",
    "    y_train = y.iloc[train_index]  # Based on your code, you might need a ravel call here, but I would look into how you're generating your y\n",
    "    X_test = X.iloc[test_index]\n",
    "    y_test = y.iloc[test_index]  # See comment on ravel and  y_train\n",
    "    \n",
    "    n_clusters = len(np.unique(y_train))\n",
    "    \n",
    "#------------------------------Standardize Testing Set------------------------------------\n",
    "    std_scale = preprocessing.StandardScaler().fit(X_train[cols_to_norm])\n",
    "    X_train[cols_to_norm] = std_scale.transform(X_train[cols_to_norm])\n",
    "    X_test[cols_to_norm] = std_scale.transform(X_test[cols_to_norm])\n",
    "#------------------------------------------------------------------------------------------\n",
    "\n",
    " # Hyperparameters are optimized using hyperopt\n",
    "\n",
    "       \n",
    "    clf = KMeans(n_clusters = n_clusters, random_state=42)\n",
    "    clf.fit(X_train[['vent', 'temperature', 'bun', 'fio2',   'gcs','age', 'offset','diaggroup_CVA', 'diaggroup_CardiacArrest', 'diaggroup_Sepsis']])\n",
    "    y_labels_train = clf.labels_\n",
    "    y_labels_test = clf.predict(X_test[['vent', 'temperature', 'bun', 'fio2',   'gcs','age', 'offset','diaggroup_CVA', 'diaggroup_CardiacArrest', 'diaggroup_Sepsis']])\n",
    "    X_train['km_clust'] = y_labels_train\n",
    "    print(\"hi\")\n",
    "    X_train.shape\n",
    "    X_test['km_clust'] = y_labels_test\n",
    "    X_test.shape\n",
    "    \n",
    "    \n",
    "    \n",
    "    \n",
    "#------------------------------------------------------------------------------------------\n",
    "    \n",
    "    sm = SMOTENC(random_state=50, categorical_features=[1,2,3,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61, 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81])\n",
    "    X_train_oversampled, y_train_oversampled = sm.fit_sample(X_train, y_train)\n",
    "    print(sorted(Counter(y_train).items()))\n",
    "    model = linear_model.LogisticRegression(C= 2.5,max_iter= 100,tol= 6.75e-05,penalty='l1', class_weight='balanced')  \n",
    "    model.fit(X_train_oversampled, y_train_oversampled)  \n",
    "    y_pred = model.predict(X_test)\n",
    "    visualizer = ROCAUC(model, classes=classes)\n",
    "    visualizer.fit(X_train_oversampled, y_train_oversampled)  # Fit the training data to the visualizer\n",
    "    visualizer.score(X_test, y_test)  # Evaluate the model on the test data\n",
    "    visualizer.poof(\"LR_Mixed_Main_{}.pdf\".format(fold), clear_figure=True) \n",
    "    print(f'For fold {fold}:')\n",
    "    print(f'Accuracy: {model.score(X_test, y_test)}')\n",
    "    f1=f1_score(y_test, y_pred, average='micro')\n",
    "    print(f'f-score: {f1}')\n",
    "    print(classification_report_imbalanced(y_test, y_pred))\n",
    "    \n",
    "\n",
    "\n",
    "    \n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "kF-qCqGV6lMI",
    "outputId": "2067787a-71df-4819-db20-59705c0a7e8a"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0        1\n",
       "1        3\n",
       "2        1\n",
       "3        1\n",
       "4        1\n",
       "5        3\n",
       "6        1\n",
       "7        1\n",
       "8        3\n",
       "9        1\n",
       "10       1\n",
       "11       1\n",
       "12       3\n",
       "13       0\n",
       "14       1\n",
       "15       3\n",
       "16       1\n",
       "17       3\n",
       "18       1\n",
       "19       1\n",
       "20       1\n",
       "21       1\n",
       "22       1\n",
       "23       1\n",
       "24       1\n",
       "25       1\n",
       "26       3\n",
       "27       3\n",
       "28       0\n",
       "29       1\n",
       "        ..\n",
       "97186    1\n",
       "97187    1\n",
       "97188    1\n",
       "97189    1\n",
       "97190    1\n",
       "97191    0\n",
       "97192    3\n",
       "97193    1\n",
       "97194    1\n",
       "97195    1\n",
       "97196    0\n",
       "97197    1\n",
       "97198    3\n",
       "97199    1\n",
       "97200    1\n",
       "97201    0\n",
       "97202    3\n",
       "97203    1\n",
       "97204    1\n",
       "97205    0\n",
       "97206    2\n",
       "97207    0\n",
       "97208    3\n",
       "97209    1\n",
       "97210    1\n",
       "97211    1\n",
       "97212    1\n",
       "97213    3\n",
       "97214    1\n",
       "97215    0\n",
       "Name: km_clust, Length: 97216, dtype: int32"
      ]
     },
     "execution_count": 32,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train['km_clust']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "eQO4m1JD6lMI"
   },
   "outputs": [],
   "source": [
    "r=X_train.copy()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "F0p1tQnq6lMJ",
    "outputId": "ab11cb9a-73c3-46b6-eba7-d05253a4cca0"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sodium</th>\n",
       "      <th>electivesurgery</th>\n",
       "      <th>vent</th>\n",
       "      <th>dialysis</th>\n",
       "      <th>gcs</th>\n",
       "      <th>urine</th>\n",
       "      <th>wbc</th>\n",
       "      <th>temperature</th>\n",
       "      <th>respiratoryrate</th>\n",
       "      <th>heartrate</th>\n",
       "      <th>...</th>\n",
       "      <th>m12_True</th>\n",
       "      <th>m13_True</th>\n",
       "      <th>m14_True</th>\n",
       "      <th>m15_True</th>\n",
       "      <th>m16_True</th>\n",
       "      <th>m17_True</th>\n",
       "      <th>m18_True</th>\n",
       "      <th>m19_True</th>\n",
       "      <th>m20_True</th>\n",
       "      <th>km_clust</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>-0.681964</td>\n",
       "      <td>0.859496</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.166369</td>\n",
       "      <td>-1.396133</td>\n",
       "      <td>0.337637</td>\n",
       "      <td>3.604419</td>\n",
       "      <td>0.782521</td>\n",
       "      <td>0.643651</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-0.861765</td>\n",
       "      <td>1.482495</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>0.297334</td>\n",
       "      <td>0.380078</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>0.850101</td>\n",
       "      <td>0.116229</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1.059665</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.543367</td>\n",
       "      <td>-0.492726</td>\n",
       "      <td>-2.126451</td>\n",
       "      <td>-1.380049</td>\n",
       "      <td>0.511796</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>-0.117364</td>\n",
       "      <td>0.925698</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>1.611408</td>\n",
       "      <td>-0.097963</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>0.714940</td>\n",
       "      <td>0.478832</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>0.916627</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.443590</td>\n",
       "      <td>-0.778588</td>\n",
       "      <td>-1.871745</td>\n",
       "      <td>1.931386</td>\n",
       "      <td>1.138110</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>5</th>\n",
       "      <td>0.259036</td>\n",
       "      <td>1.098652</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>1.114718</td>\n",
       "      <td>-0.438276</td>\n",
       "      <td>-0.216161</td>\n",
       "      <td>1.458324</td>\n",
       "      <td>-0.147482</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>6</th>\n",
       "      <td>0.552113</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.369482</td>\n",
       "      <td>-0.290931</td>\n",
       "      <td>0.420602</td>\n",
       "      <td>-0.636666</td>\n",
       "      <td>0.083265</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>7</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>1.992667</td>\n",
       "      <td>-0.534937</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>-0.028443</td>\n",
       "      <td>-0.114519</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>8</th>\n",
       "      <td>3.474343</td>\n",
       "      <td>0.301079</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.189526</td>\n",
       "      <td>-0.364714</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>0.241878</td>\n",
       "      <td>0.248084</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>9</th>\n",
       "      <td>0.447236</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>1.251597</td>\n",
       "      <td>-0.179638</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>1.188002</td>\n",
       "      <td>0.709579</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>10</th>\n",
       "      <td>-0.305564</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.866858</td>\n",
       "      <td>-1.118901</td>\n",
       "      <td>-1.107629</td>\n",
       "      <td>-1.042148</td>\n",
       "      <td>-1.531966</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>11</th>\n",
       "      <td>-0.117364</td>\n",
       "      <td>1.122396</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.912948</td>\n",
       "      <td>0.800462</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-0.163604</td>\n",
       "      <td>-0.543049</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>12</th>\n",
       "      <td>0.447236</td>\n",
       "      <td>1.138969</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.138761</td>\n",
       "      <td>-0.764976</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>1.728645</td>\n",
       "      <td>-0.246374</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>13</th>\n",
       "      <td>-1.058364</td>\n",
       "      <td>0.826892</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-2.565597</td>\n",
       "      <td>-1.467063</td>\n",
       "      <td>-0.261313</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>0.647360</td>\n",
       "      <td>0.511796</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>14</th>\n",
       "      <td>1.143563</td>\n",
       "      <td>1.419359</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>0.756106</td>\n",
       "      <td>-0.901101</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-1.380049</td>\n",
       "      <td>-0.015627</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>15</th>\n",
       "      <td>0.685819</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.640511</td>\n",
       "      <td>0.405699</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>-1.042148</td>\n",
       "      <td>2.555557</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>16</th>\n",
       "      <td>0.555785</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-1.306823</td>\n",
       "      <td>0.863921</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>-0.569086</td>\n",
       "      <td>-1.400111</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>17</th>\n",
       "      <td>0.070836</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-1.292957</td>\n",
       "      <td>1.385799</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>1.593484</td>\n",
       "      <td>0.973290</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>18</th>\n",
       "      <td>1.576435</td>\n",
       "      <td>0.523411</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-1.194609</td>\n",
       "      <td>2.393056</td>\n",
       "      <td>-0.234088</td>\n",
       "      <td>-0.216161</td>\n",
       "      <td>0.579780</td>\n",
       "      <td>0.017337</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>19</th>\n",
       "      <td>-0.117364</td>\n",
       "      <td>0.734129</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-1.155986</td>\n",
       "      <td>-0.451888</td>\n",
       "      <td>0.038545</td>\n",
       "      <td>-0.839407</td>\n",
       "      <td>0.182157</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>20</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>0.471570</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.310790</td>\n",
       "      <td>-0.710526</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>-0.298764</td>\n",
       "      <td>0.643651</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>21</th>\n",
       "      <td>0.447236</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.401062</td>\n",
       "      <td>0.255962</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-0.636666</td>\n",
       "      <td>-0.147482</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>22</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.354343</td>\n",
       "      <td>-0.206863</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-0.974568</td>\n",
       "      <td>3.313727</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>23</th>\n",
       "      <td>-0.681964</td>\n",
       "      <td>1.064101</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.325140</td>\n",
       "      <td>-0.560788</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>-0.704246</td>\n",
       "      <td>-0.279338</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>24</th>\n",
       "      <td>-0.273389</td>\n",
       "      <td>0.244215</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.739734</td>\n",
       "      <td>-0.744194</td>\n",
       "      <td>-1.871745</td>\n",
       "      <td>-0.163604</td>\n",
       "      <td>-1.367147</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>25</th>\n",
       "      <td>1.377070</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.521300</td>\n",
       "      <td>-1.090165</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>0.985262</td>\n",
       "      <td>-1.169363</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>26</th>\n",
       "      <td>-1.200002</td>\n",
       "      <td>1.263085</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.435928</td>\n",
       "      <td>-0.325981</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>-0.704246</td>\n",
       "      <td>1.105146</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>27</th>\n",
       "      <td>0.070836</td>\n",
       "      <td>0.996634</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.174357</td>\n",
       "      <td>-0.383826</td>\n",
       "      <td>-0.470866</td>\n",
       "      <td>1.188002</td>\n",
       "      <td>-0.114519</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>28</th>\n",
       "      <td>0.823635</td>\n",
       "      <td>1.045833</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-1.537356</td>\n",
       "      <td>-0.757020</td>\n",
       "      <td>-0.490307</td>\n",
       "      <td>0.675308</td>\n",
       "      <td>-1.380049</td>\n",
       "      <td>-0.147482</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>29</th>\n",
       "      <td>1.200035</td>\n",
       "      <td>1.160238</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.856408</td>\n",
       "      <td>-0.846651</td>\n",
       "      <td>0.420602</td>\n",
       "      <td>1.323163</td>\n",
       "      <td>0.314012</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97186</th>\n",
       "      <td>-2.026258</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.326659</td>\n",
       "      <td>-0.511688</td>\n",
       "      <td>-0.343513</td>\n",
       "      <td>0.377039</td>\n",
       "      <td>-1.993461</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97187</th>\n",
       "      <td>-2.166705</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.089078</td>\n",
       "      <td>-0.388565</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>-1.177308</td>\n",
       "      <td>-1.235291</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97188</th>\n",
       "      <td>1.023733</td>\n",
       "      <td>0.958161</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.674986</td>\n",
       "      <td>-0.590674</td>\n",
       "      <td>0.226332</td>\n",
       "      <td>-0.598219</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>-2.059389</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97189</th>\n",
       "      <td>1.576435</td>\n",
       "      <td>0.406408</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-1.172530</td>\n",
       "      <td>-0.119372</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>-0.444158</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97190</th>\n",
       "      <td>0.767009</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>0.535019</td>\n",
       "      <td>1.247073</td>\n",
       "      <td>0.675308</td>\n",
       "      <td>0.039137</td>\n",
       "      <td>-0.147482</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97191</th>\n",
       "      <td>-0.426119</td>\n",
       "      <td>0.535617</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-1.014049</td>\n",
       "      <td>1.509891</td>\n",
       "      <td>1.210075</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>-0.636666</td>\n",
       "      <td>0.215120</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97192</th>\n",
       "      <td>1.200035</td>\n",
       "      <td>0.424769</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>-0.752318</td>\n",
       "      <td>-0.656076</td>\n",
       "      <td>-0.343513</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>1.237001</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97193</th>\n",
       "      <td>0.259036</td>\n",
       "      <td>1.138332</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.123582</td>\n",
       "      <td>1.222449</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>0.377039</td>\n",
       "      <td>1.237001</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97194</th>\n",
       "      <td>-1.045646</td>\n",
       "      <td>0.663694</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>-0.097972</td>\n",
       "      <td>0.307920</td>\n",
       "      <td>2.840303</td>\n",
       "      <td>0.714940</td>\n",
       "      <td>0.676615</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97195</th>\n",
       "      <td>0.348892</td>\n",
       "      <td>0.526342</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.632219</td>\n",
       "      <td>-1.076554</td>\n",
       "      <td>0.420602</td>\n",
       "      <td>1.188002</td>\n",
       "      <td>-1.334183</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97196</th>\n",
       "      <td>0.635435</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-3.593838</td>\n",
       "      <td>1.343935</td>\n",
       "      <td>1.018262</td>\n",
       "      <td>-1.828132</td>\n",
       "      <td>0.106717</td>\n",
       "      <td>0.116229</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97197</th>\n",
       "      <td>-0.117364</td>\n",
       "      <td>0.553722</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.666500</td>\n",
       "      <td>-0.166026</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>0.309458</td>\n",
       "      <td>0.346976</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97198</th>\n",
       "      <td>-0.870164</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>1.253000</td>\n",
       "      <td>-0.451888</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>0.309458</td>\n",
       "      <td>-1.564930</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97199</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>0.791849</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.166369</td>\n",
       "      <td>-0.270457</td>\n",
       "      <td>-0.125188</td>\n",
       "      <td>0.930013</td>\n",
       "      <td>0.377039</td>\n",
       "      <td>1.830351</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97200</th>\n",
       "      <td>-1.264474</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.399510</td>\n",
       "      <td>-1.257626</td>\n",
       "      <td>0.930013</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>-0.147482</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97201</th>\n",
       "      <td>-1.078979</td>\n",
       "      <td>0.624408</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-1.194609</td>\n",
       "      <td>-0.185786</td>\n",
       "      <td>0.034331</td>\n",
       "      <td>1.057366</td>\n",
       "      <td>0.444619</td>\n",
       "      <td>1.896279</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97202</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>1.212735</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.627428</td>\n",
       "      <td>0.460149</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-1.380049</td>\n",
       "      <td>0.874398</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97203</th>\n",
       "      <td>0.635435</td>\n",
       "      <td>1.076185</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.237293</td>\n",
       "      <td>-1.675018</td>\n",
       "      <td>-0.216161</td>\n",
       "      <td>-0.974568</td>\n",
       "      <td>-2.026425</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97204</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>1.687988</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>3.438795</td>\n",
       "      <td>-0.166026</td>\n",
       "      <td>3.986477</td>\n",
       "      <td>1.525904</td>\n",
       "      <td>0.577723</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97205</th>\n",
       "      <td>0.823635</td>\n",
       "      <td>0.682610</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-1.537356</td>\n",
       "      <td>-0.142878</td>\n",
       "      <td>-0.078337</td>\n",
       "      <td>-0.470866</td>\n",
       "      <td>1.728645</td>\n",
       "      <td>0.346976</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97206</th>\n",
       "      <td>1.132685</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.350070</td>\n",
       "      <td>1.071183</td>\n",
       "      <td>0.597714</td>\n",
       "      <td>0.173995</td>\n",
       "      <td>-0.771827</td>\n",
       "      <td>-0.378230</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97207</th>\n",
       "      <td>0.259036</td>\n",
       "      <td>1.154917</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-1.880103</td>\n",
       "      <td>-0.264315</td>\n",
       "      <td>-0.601626</td>\n",
       "      <td>3.859124</td>\n",
       "      <td>0.241878</td>\n",
       "      <td>1.039218</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97208</th>\n",
       "      <td>-0.145273</td>\n",
       "      <td>0.387276</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.166369</td>\n",
       "      <td>0.243954</td>\n",
       "      <td>0.174287</td>\n",
       "      <td>0.802660</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>0.116229</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97209</th>\n",
       "      <td>-0.055043</td>\n",
       "      <td>1.097365</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.485110</td>\n",
       "      <td>-0.921644</td>\n",
       "      <td>-0.470866</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>-1.795677</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97210</th>\n",
       "      <td>0.447236</td>\n",
       "      <td>0.892346</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.424198</td>\n",
       "      <td>-0.773374</td>\n",
       "      <td>0.838030</td>\n",
       "      <td>-0.839407</td>\n",
       "      <td>-1.103436</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97211</th>\n",
       "      <td>1.011835</td>\n",
       "      <td>0.952220</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>-0.287366</td>\n",
       "      <td>-0.274926</td>\n",
       "      <td>-0.088808</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>0.017337</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97212</th>\n",
       "      <td>0.447236</td>\n",
       "      <td>1.059568</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.212837</td>\n",
       "      <td>0.800462</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-0.839407</td>\n",
       "      <td>0.314012</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97213</th>\n",
       "      <td>0.823635</td>\n",
       "      <td>0.618508</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.509116</td>\n",
       "      <td>-0.407535</td>\n",
       "      <td>1.045487</td>\n",
       "      <td>0.420602</td>\n",
       "      <td>0.985262</td>\n",
       "      <td>0.248084</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97214</th>\n",
       "      <td>0.635435</td>\n",
       "      <td>0.612340</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.851862</td>\n",
       "      <td>0.800291</td>\n",
       "      <td>-0.438276</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>-0.906987</td>\n",
       "      <td>-1.301219</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>97215</th>\n",
       "      <td>0.447236</td>\n",
       "      <td>0.148500</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-1.194609</td>\n",
       "      <td>0.271386</td>\n",
       "      <td>0.144139</td>\n",
       "      <td>0.547955</td>\n",
       "      <td>0.444619</td>\n",
       "      <td>1.500712</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>97216 rows × 83 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "         sodium  electivesurgery  vent  dialysis       gcs     urine  \\\n",
       "0     -0.681964         0.859496   0.0       0.0 -0.166369 -1.396133   \n",
       "1     -0.861765         1.482495   0.0       0.0  0.176378  0.297334   \n",
       "2      1.059665         1.000000   1.0       0.0  0.519125 -0.543367   \n",
       "3     -0.117364         0.925698   0.0       0.0  0.519125  1.611408   \n",
       "4     -0.493764         0.916627   0.0       0.0  0.519125  0.443590   \n",
       "5      0.259036         1.098652   0.0       0.0  0.519125  1.114718   \n",
       "6      0.552113         1.000000   0.0       0.0  0.519125 -0.369482   \n",
       "7     -0.493764         1.000000   0.0       0.0  0.176378  1.992667   \n",
       "8      3.474343         0.301079   0.0       0.0  0.519125  0.189526   \n",
       "9      0.447236         1.000000   0.0       0.0  0.519125  1.251597   \n",
       "10    -0.305564         1.000000   0.0       0.0  0.519125 -0.866858   \n",
       "11    -0.117364         1.122396   0.0       0.0  0.519125 -0.912948   \n",
       "12     0.447236         1.138969   0.0       0.0  0.519125 -0.138761   \n",
       "13    -1.058364         0.826892   1.0       0.0 -2.565597 -1.467063   \n",
       "14     1.143563         1.419359   0.0       0.0  0.176378  0.756106   \n",
       "15     0.685819         1.000000   1.0       0.0  0.519125 -0.640511   \n",
       "16     0.555785         1.000000   0.0       0.0  0.519125 -1.306823   \n",
       "17     0.070836         1.000000   0.0       0.0  0.519125 -1.292957   \n",
       "18     1.576435         0.523411   1.0       0.0 -1.194609  2.393056   \n",
       "19    -0.117364         0.734129   0.0       0.0  0.519125 -1.155986   \n",
       "20    -0.493764         0.471570   0.0       0.0  0.519125  0.310790   \n",
       "21     0.447236         0.000000   1.0       0.0  0.519125 -0.401062   \n",
       "22    -0.493764         1.000000   0.0       0.0  0.519125 -0.354343   \n",
       "23    -0.681964         1.064101   0.0       0.0  0.519125  0.325140   \n",
       "24    -0.273389         0.244215   0.0       0.0  0.519125 -0.739734   \n",
       "25     1.377070         1.000000   0.0       0.0  0.519125  0.521300   \n",
       "26    -1.200002         1.263085   0.0       0.0  0.519125  0.435928   \n",
       "27     0.070836         0.996634   0.0       0.0  0.519125 -0.174357   \n",
       "28     0.823635         1.045833   0.0       0.0 -1.537356 -0.757020   \n",
       "29     1.200035         1.160238   0.0       0.0  0.519125 -0.856408   \n",
       "...         ...              ...   ...       ...       ...       ...   \n",
       "97186 -2.026258         1.000000   0.0       0.0  0.519125  0.326659   \n",
       "97187 -2.166705         1.000000   0.0       0.0  0.519125 -0.089078   \n",
       "97188  1.023733         0.958161   0.0       0.0 -0.674986 -0.590674   \n",
       "97189  1.576435         0.406408   0.0       0.0  0.519125 -1.172530   \n",
       "97190  0.767009         1.000000   0.0       0.0  0.176378  0.535019   \n",
       "97191 -0.426119         0.535617   0.0       0.0 -1.014049  1.509891   \n",
       "97192  1.200035         0.424769   0.0       0.0  0.176378 -0.752318   \n",
       "97193  0.259036         1.138332   0.0       0.0  0.519125  0.123582   \n",
       "97194 -1.045646         0.663694   0.0       0.0  0.176378 -0.097972   \n",
       "97195  0.348892         0.526342   0.0       0.0  0.519125  0.632219   \n",
       "97196  0.635435         1.000000   0.0       0.0 -3.593838  1.343935   \n",
       "97197 -0.117364         0.553722   0.0       0.0  0.519125 -0.666500   \n",
       "97198 -0.870164         1.000000   0.0       0.0  0.519125  1.253000   \n",
       "97199 -0.493764         0.791849   0.0       0.0 -0.166369 -0.270457   \n",
       "97200 -1.264474         1.000000   0.0       0.0  0.519125 -0.399510   \n",
       "97201 -1.078979         0.624408   1.0       0.0 -1.194609 -0.185786   \n",
       "97202 -0.493764         1.212735   0.0       0.0  0.519125  0.627428   \n",
       "97203  0.635435         1.076185   0.0       0.0  0.519125 -0.237293   \n",
       "97204 -0.493764         1.687988   0.0       0.0  0.519125  3.438795   \n",
       "97205  0.823635         0.682610   0.0       0.0 -1.537356 -0.142878   \n",
       "97206  1.132685         1.000000   0.0       0.0  0.350070  1.071183   \n",
       "97207  0.259036         1.154917   1.0       0.0 -1.880103 -0.264315   \n",
       "97208 -0.145273         0.387276   0.0       0.0 -0.166369  0.243954   \n",
       "97209 -0.055043         1.097365   0.0       0.0  0.519125  0.485110   \n",
       "97210  0.447236         0.892346   0.0       0.0  0.519125 -0.424198   \n",
       "97211  1.011835         0.952220   0.0       0.0  0.176378 -0.287366   \n",
       "97212  0.447236         1.059568   0.0       0.0  0.519125  0.212837   \n",
       "97213  0.823635         0.618508   0.0       0.0 -0.509116 -0.407535   \n",
       "97214  0.635435         0.612340   1.0       0.0 -0.851862  0.800291   \n",
       "97215  0.447236         0.148500   0.0       0.0 -1.194609  0.271386   \n",
       "\n",
       "            wbc  temperature  respiratoryrate  heartrate    ...     m12_True  \\\n",
       "0      0.337637     3.604419         0.782521   0.643651    ...          0.0   \n",
       "1      0.380078     0.293250         0.850101   0.116229    ...          1.0   \n",
       "2     -0.492726    -2.126451        -1.380049   0.511796    ...          0.0   \n",
       "3     -0.097963     0.165897         0.714940   0.478832    ...          0.0   \n",
       "4     -0.778588    -1.871745         1.931386   1.138110    ...          0.0   \n",
       "5     -0.438276    -0.216161         1.458324  -0.147482    ...          0.0   \n",
       "6     -0.290931     0.420602        -0.636666   0.083265    ...          1.0   \n",
       "7     -0.534937    -0.088808        -0.028443  -0.114519    ...          1.0   \n",
       "8     -0.364714     0.165897         0.241878   0.248084    ...          1.0   \n",
       "9     -0.179638     0.165897         1.188002   0.709579    ...          0.0   \n",
       "10    -1.118901    -1.107629        -1.042148  -1.531966    ...          0.0   \n",
       "11     0.800462     0.165897        -0.163604  -0.543049    ...          0.0   \n",
       "12    -0.764976     0.165897         1.728645  -0.246374    ...          0.0   \n",
       "13    -0.261313    -0.088808         0.647360   0.511796    ...          0.0   \n",
       "14    -0.901101     0.165897        -1.380049  -0.015627    ...          0.0   \n",
       "15     0.405699    -0.088808        -1.042148   2.555557    ...          0.0   \n",
       "16     0.863921    -0.088808        -0.569086  -1.400111    ...          1.0   \n",
       "17     1.385799     0.293250         1.593484   0.973290    ...          0.0   \n",
       "18    -0.234088    -0.216161         0.579780   0.017337    ...          0.0   \n",
       "19    -0.451888     0.038545        -0.839407   0.182157    ...          0.0   \n",
       "20    -0.710526     0.293250        -0.298764   0.643651    ...          0.0   \n",
       "21     0.255962     0.165897        -0.636666  -0.147482    ...          0.0   \n",
       "22    -0.206863     0.165897        -0.974568   3.313727    ...          0.0   \n",
       "23    -0.560788     0.293250        -0.704246  -0.279338    ...          0.0   \n",
       "24    -0.744194    -1.871745        -0.163604  -1.367147    ...          1.0   \n",
       "25    -1.090165    -0.088808         0.985262  -1.169363    ...          1.0   \n",
       "26    -0.325981     0.293250        -0.704246   1.105146    ...          0.0   \n",
       "27    -0.383826    -0.470866         1.188002  -0.114519    ...          0.0   \n",
       "28    -0.490307     0.675308        -1.380049  -0.147482    ...          1.0   \n",
       "29    -0.846651     0.420602         1.323163   0.314012    ...          0.0   \n",
       "...         ...          ...              ...        ...    ...          ...   \n",
       "97186 -0.511688    -0.343513         0.377039  -1.993461    ...          1.0   \n",
       "97187 -0.388565    -0.088808        -1.177308  -1.235291    ...          1.0   \n",
       "97188  0.226332    -0.598219        -0.906987  -2.059389    ...          1.0   \n",
       "97189 -0.119372     0.165897        -0.906987  -0.444158    ...          0.0   \n",
       "97190  1.247073     0.675308         0.039137  -0.147482    ...          1.0   \n",
       "97191  1.210075     0.293250        -0.636666   0.215120    ...          1.0   \n",
       "97192 -0.656076    -0.343513        -0.906987   1.237001    ...          0.0   \n",
       "97193  1.222449     0.293250         0.377039   1.237001    ...          0.0   \n",
       "97194  0.307920     2.840303         0.714940   0.676615    ...          1.0   \n",
       "97195 -1.076554     0.420602         1.188002  -1.334183    ...          1.0   \n",
       "97196  1.018262    -1.828132         0.106717   0.116229    ...          0.0   \n",
       "97197 -0.166026    -0.088808         0.309458   0.346976    ...          0.0   \n",
       "97198 -0.451888    -0.088808         0.309458  -1.564930    ...          0.0   \n",
       "97199 -0.125188     0.930013         0.377039   1.830351    ...          0.0   \n",
       "97200 -1.257626     0.930013        -0.906987  -0.147482    ...          1.0   \n",
       "97201  0.034331     1.057366         0.444619   1.896279    ...          1.0   \n",
       "97202  0.460149     0.165897        -1.380049   0.874398    ...          0.0   \n",
       "97203 -1.675018    -0.216161        -0.974568  -2.026425    ...          1.0   \n",
       "97204 -0.166026     3.986477         1.525904   0.577723    ...          0.0   \n",
       "97205 -0.078337    -0.470866         1.728645   0.346976    ...          1.0   \n",
       "97206  0.597714     0.173995        -0.771827  -0.378230    ...          1.0   \n",
       "97207 -0.601626     3.859124         0.241878   1.039218    ...          0.0   \n",
       "97208  0.174287     0.802660        -0.906987   0.116229    ...          0.0   \n",
       "97209 -0.921644    -0.470866        -0.906987  -1.795677    ...          1.0   \n",
       "97210 -0.773374     0.838030        -0.839407  -1.103436    ...          1.0   \n",
       "97211 -0.274926    -0.088808        -0.906987   0.017337    ...          0.0   \n",
       "97212  0.800462     0.165897        -0.839407   0.314012    ...          0.0   \n",
       "97213  1.045487     0.420602         0.985262   0.248084    ...          0.0   \n",
       "97214 -0.438276     0.165897        -0.906987  -1.301219    ...          0.0   \n",
       "97215  0.144139     0.547955         0.444619   1.500712    ...          1.0   \n",
       "\n",
       "       m13_True  m14_True  m15_True  m16_True  m17_True  m18_True  m19_True  \\\n",
       "0           0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "1           1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "2           1.0       0.0       0.0       1.0       0.0       1.0       0.0   \n",
       "3           1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "4           1.0       0.0       0.0       0.0       0.0       1.0       0.0   \n",
       "5           0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "6           1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "7           1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "8           1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "9           0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "10          1.0       0.0       0.0       0.0       0.0       1.0       0.0   \n",
       "11          1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "12          1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "13          1.0       0.0       0.0       0.0       0.0       1.0       0.0   \n",
       "14          1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "15          1.0       0.0       0.0       1.0       0.0       1.0       0.0   \n",
       "16          1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "17          1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "18          0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "19          1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "20          1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "21          0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "22          0.0       0.0       0.0       0.0       0.0       0.0       0.0   \n",
       "23          1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "24          1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "25          1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "26          1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "27          0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "28          1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "29          0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "...         ...       ...       ...       ...       ...       ...       ...   \n",
       "97186       1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "97187       1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "97188       1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "97189       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97190       1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "97191       1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "97192       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97193       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97194       1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "97195       1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "97196       1.0       0.0       0.0       0.0       0.0       1.0       0.0   \n",
       "97197       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97198       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97199       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97200       1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "97201       1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "97202       0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "97203       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97204       0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "97205       0.0       0.0       0.0       0.0       0.0       0.0       0.0   \n",
       "97206       1.0       1.0       1.0       1.0       0.0       1.0       1.0   \n",
       "97207       1.0       0.0       0.0       0.0       0.0       1.0       0.0   \n",
       "97208       1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "97209       1.0       1.0       1.0       1.0       1.0       1.0       1.0   \n",
       "97210       0.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97211       0.0       0.0       0.0       0.0       0.0       1.0       0.0   \n",
       "97212       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "97213       0.0       1.0       1.0       0.0       0.0       0.0       1.0   \n",
       "97214       1.0       0.0       0.0       0.0       0.0       1.0       0.0   \n",
       "97215       1.0       1.0       1.0       0.0       0.0       1.0       1.0   \n",
       "\n",
       "       m20_True  km_clust  \n",
       "0           0.0         1  \n",
       "1           0.0         3  \n",
       "2           0.0         1  \n",
       "3           0.0         1  \n",
       "4           0.0         1  \n",
       "5           0.0         3  \n",
       "6           0.0         1  \n",
       "7           0.0         1  \n",
       "8           0.0         3  \n",
       "9           0.0         1  \n",
       "10          0.0         1  \n",
       "11          0.0         1  \n",
       "12          0.0         3  \n",
       "13          0.0         0  \n",
       "14          0.0         1  \n",
       "15          0.0         3  \n",
       "16          0.0         1  \n",
       "17          0.0         3  \n",
       "18          0.0         1  \n",
       "19          0.0         1  \n",
       "20          0.0         1  \n",
       "21          0.0         1  \n",
       "22          1.0         1  \n",
       "23          0.0         1  \n",
       "24          0.0         1  \n",
       "25          0.0         1  \n",
       "26          0.0         3  \n",
       "27          0.0         3  \n",
       "28          0.0         0  \n",
       "29          0.0         1  \n",
       "...         ...       ...  \n",
       "97186       0.0         1  \n",
       "97187       0.0         1  \n",
       "97188       0.0         1  \n",
       "97189       0.0         1  \n",
       "97190       0.0         1  \n",
       "97191       0.0         0  \n",
       "97192       0.0         3  \n",
       "97193       0.0         1  \n",
       "97194       0.0         1  \n",
       "97195       0.0         1  \n",
       "97196       0.0         0  \n",
       "97197       0.0         1  \n",
       "97198       0.0         3  \n",
       "97199       0.0         1  \n",
       "97200       0.0         1  \n",
       "97201       0.0         0  \n",
       "97202       0.0         3  \n",
       "97203       0.0         1  \n",
       "97204       0.0         1  \n",
       "97205       0.0         0  \n",
       "97206       0.0         2  \n",
       "97207       0.0         0  \n",
       "97208       0.0         3  \n",
       "97209       0.0         1  \n",
       "97210       0.0         1  \n",
       "97211       0.0         1  \n",
       "97212       0.0         1  \n",
       "97213       1.0         3  \n",
       "97214       0.0         1  \n",
       "97215       0.0         0  \n",
       "\n",
       "[97216 rows x 83 columns]"
      ]
     },
     "execution_count": 34,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "r"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "nkF7t9M06lMJ",
    "outputId": "4990da6b-6298-4e24-9cdc-be2363a7b63c"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 35,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "n_clusters"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "OFMrD69J6lMJ",
    "outputId": "cce3cc02-46ce-4ff1-fea6-f2b223ae804a"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(97216, 83)"
      ]
     },
     "execution_count": 36,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "1cL28agY6lMJ",
    "outputId": "8e4bcbc8-202c-4b02-b27e-e6cf3b384f7d"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([1, 3, 1, ..., 3, 1, 0], dtype=int32)"
      ]
     },
     "execution_count": 37,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "clf.labels_"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Ch1u484i6lMK",
    "outputId": "49276966-06c3-4bea-e1c5-8f31e68c7f82"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0        1\n",
       "1        3\n",
       "2        1\n",
       "3        1\n",
       "4        1\n",
       "5        3\n",
       "6        1\n",
       "7        1\n",
       "8        3\n",
       "9        1\n",
       "10       1\n",
       "11       1\n",
       "12       3\n",
       "13       0\n",
       "14       1\n",
       "15       3\n",
       "16       1\n",
       "17       3\n",
       "18       1\n",
       "19       1\n",
       "20       1\n",
       "21       1\n",
       "22       1\n",
       "23       1\n",
       "24       1\n",
       "25       1\n",
       "26       3\n",
       "27       3\n",
       "28       0\n",
       "29       1\n",
       "        ..\n",
       "97186    1\n",
       "97187    1\n",
       "97188    1\n",
       "97189    1\n",
       "97190    1\n",
       "97191    0\n",
       "97192    3\n",
       "97193    1\n",
       "97194    1\n",
       "97195    1\n",
       "97196    0\n",
       "97197    1\n",
       "97198    3\n",
       "97199    1\n",
       "97200    1\n",
       "97201    0\n",
       "97202    3\n",
       "97203    1\n",
       "97204    1\n",
       "97205    0\n",
       "97206    2\n",
       "97207    0\n",
       "97208    3\n",
       "97209    1\n",
       "97210    1\n",
       "97211    1\n",
       "97212    1\n",
       "97213    3\n",
       "97214    1\n",
       "97215    0\n",
       "Name: km_clust, Length: 97216, dtype: int32"
      ]
     },
     "execution_count": 38,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train['km_clust']\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "iaMDqxUL6lMK",
    "outputId": "3b127456-ab12-41c6-d2b8-cba791462d35"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([1, 3, 1, ..., 3, 1, 0], dtype=int32)"
      ]
     },
     "execution_count": 39,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y_labels_train\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "rhZkhhLr6lMK",
    "outputId": "f89e0d58-96e0-4bf3-a803-657c7bb289da"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sodium</th>\n",
       "      <th>electivesurgery</th>\n",
       "      <th>vent</th>\n",
       "      <th>dialysis</th>\n",
       "      <th>gcs</th>\n",
       "      <th>urine</th>\n",
       "      <th>wbc</th>\n",
       "      <th>temperature</th>\n",
       "      <th>respiratoryrate</th>\n",
       "      <th>heartrate</th>\n",
       "      <th>...</th>\n",
       "      <th>m12_True</th>\n",
       "      <th>m13_True</th>\n",
       "      <th>m14_True</th>\n",
       "      <th>m15_True</th>\n",
       "      <th>m16_True</th>\n",
       "      <th>m17_True</th>\n",
       "      <th>m18_True</th>\n",
       "      <th>m19_True</th>\n",
       "      <th>m20_True</th>\n",
       "      <th>km_clust</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>-0.681964</td>\n",
       "      <td>0.859496</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.166369</td>\n",
       "      <td>-1.396133</td>\n",
       "      <td>0.337637</td>\n",
       "      <td>3.604419</td>\n",
       "      <td>0.782521</td>\n",
       "      <td>0.643651</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-0.861765</td>\n",
       "      <td>1.482495</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>0.297334</td>\n",
       "      <td>0.380078</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>0.850101</td>\n",
       "      <td>0.116229</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1.059665</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.543367</td>\n",
       "      <td>-0.492726</td>\n",
       "      <td>-2.126451</td>\n",
       "      <td>-1.380049</td>\n",
       "      <td>0.511796</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>-0.117364</td>\n",
       "      <td>0.925698</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>1.611408</td>\n",
       "      <td>-0.097963</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>0.714940</td>\n",
       "      <td>0.478832</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>0.916627</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.443590</td>\n",
       "      <td>-0.778588</td>\n",
       "      <td>-1.871745</td>\n",
       "      <td>1.931386</td>\n",
       "      <td>1.138110</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 83 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "     sodium  electivesurgery  vent  dialysis       gcs     urine       wbc  \\\n",
       "0 -0.681964         0.859496   0.0       0.0 -0.166369 -1.396133  0.337637   \n",
       "1 -0.861765         1.482495   0.0       0.0  0.176378  0.297334  0.380078   \n",
       "2  1.059665         1.000000   1.0       0.0  0.519125 -0.543367 -0.492726   \n",
       "3 -0.117364         0.925698   0.0       0.0  0.519125  1.611408 -0.097963   \n",
       "4 -0.493764         0.916627   0.0       0.0  0.519125  0.443590 -0.778588   \n",
       "\n",
       "   temperature  respiratoryrate  heartrate    ...     m12_True  m13_True  \\\n",
       "0     3.604419         0.782521   0.643651    ...          0.0       0.0   \n",
       "1     0.293250         0.850101   0.116229    ...          1.0       1.0   \n",
       "2    -2.126451        -1.380049   0.511796    ...          0.0       1.0   \n",
       "3     0.165897         0.714940   0.478832    ...          0.0       1.0   \n",
       "4    -1.871745         1.931386   1.138110    ...          0.0       1.0   \n",
       "\n",
       "   m14_True  m15_True  m16_True  m17_True  m18_True  m19_True  m20_True  \\\n",
       "0       1.0       1.0       0.0       0.0       0.0       1.0       0.0   \n",
       "1       1.0       1.0       1.0       1.0       1.0       1.0       0.0   \n",
       "2       0.0       0.0       1.0       0.0       1.0       0.0       0.0   \n",
       "3       1.0       1.0       0.0       0.0       1.0       1.0       0.0   \n",
       "4       0.0       0.0       0.0       0.0       1.0       0.0       0.0   \n",
       "\n",
       "   km_clust  \n",
       "0         1  \n",
       "1         3  \n",
       "2         1  \n",
       "3         1  \n",
       "4         1  \n",
       "\n",
       "[5 rows x 83 columns]"
      ]
     },
     "execution_count": 40,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "ObSkEWt66lMK"
   },
   "outputs": [],
   "source": [
    "X_train['km_clust'] = y_labels_train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "7znT0H5x6lML",
    "outputId": "e13e4742-7fa8-4c5b-d204-107bcfc8cd45"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0        1\n",
       "1        3\n",
       "2        1\n",
       "3        1\n",
       "4        1\n",
       "5        3\n",
       "6        1\n",
       "7        1\n",
       "8        3\n",
       "9        1\n",
       "10       1\n",
       "11       1\n",
       "12       3\n",
       "13       0\n",
       "14       1\n",
       "15       3\n",
       "16       1\n",
       "17       3\n",
       "18       1\n",
       "19       1\n",
       "20       1\n",
       "21       1\n",
       "22       1\n",
       "23       1\n",
       "24       1\n",
       "25       1\n",
       "26       3\n",
       "27       3\n",
       "28       0\n",
       "29       1\n",
       "        ..\n",
       "97186    1\n",
       "97187    1\n",
       "97188    1\n",
       "97189    1\n",
       "97190    1\n",
       "97191    0\n",
       "97192    3\n",
       "97193    1\n",
       "97194    1\n",
       "97195    1\n",
       "97196    0\n",
       "97197    1\n",
       "97198    3\n",
       "97199    1\n",
       "97200    1\n",
       "97201    0\n",
       "97202    3\n",
       "97203    1\n",
       "97204    1\n",
       "97205    0\n",
       "97206    2\n",
       "97207    0\n",
       "97208    3\n",
       "97209    1\n",
       "97210    1\n",
       "97211    1\n",
       "97212    1\n",
       "97213    3\n",
       "97214    1\n",
       "97215    0\n",
       "Name: km_clust, Length: 97216, dtype: int32"
      ]
     },
     "execution_count": 42,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train['km_clust']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "oLPglP3n6lML",
    "outputId": "f564757c-b092-40d9-f994-f495dbcfeae8"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(97216, 83)"
      ]
     },
     "execution_count": 43,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "XholpmwP6lML",
    "outputId": "8884f13e-cc20-48df-fcf3-d679830b739d"
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([1, 3, 1, ..., 3, 1, 0], dtype=int32)"
      ]
     },
     "execution_count": 44,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y_labels_train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "Cp7ECkkj6lML",
    "outputId": "f5b0f3f9-f279-490c-9d3d-f0b15b52379f"
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>sodium</th>\n",
       "      <th>electivesurgery</th>\n",
       "      <th>vent</th>\n",
       "      <th>dialysis</th>\n",
       "      <th>gcs</th>\n",
       "      <th>urine</th>\n",
       "      <th>wbc</th>\n",
       "      <th>temperature</th>\n",
       "      <th>respiratoryrate</th>\n",
       "      <th>heartrate</th>\n",
       "      <th>...</th>\n",
       "      <th>m12_True</th>\n",
       "      <th>m13_True</th>\n",
       "      <th>m14_True</th>\n",
       "      <th>m15_True</th>\n",
       "      <th>m16_True</th>\n",
       "      <th>m17_True</th>\n",
       "      <th>m18_True</th>\n",
       "      <th>m19_True</th>\n",
       "      <th>m20_True</th>\n",
       "      <th>km_clust</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>-0.681964</td>\n",
       "      <td>0.859496</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>-0.166369</td>\n",
       "      <td>-1.396133</td>\n",
       "      <td>0.337637</td>\n",
       "      <td>3.604419</td>\n",
       "      <td>0.782521</td>\n",
       "      <td>0.643651</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>-0.861765</td>\n",
       "      <td>1.482495</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.176378</td>\n",
       "      <td>0.297334</td>\n",
       "      <td>0.380078</td>\n",
       "      <td>0.293250</td>\n",
       "      <td>0.850101</td>\n",
       "      <td>0.116229</td>\n",
       "      <td>...</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1.059665</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>-0.543367</td>\n",
       "      <td>-0.492726</td>\n",
       "      <td>-2.126451</td>\n",
       "      <td>-1.380049</td>\n",
       "      <td>0.511796</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>-0.117364</td>\n",
       "      <td>0.925698</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>1.611408</td>\n",
       "      <td>-0.097963</td>\n",
       "      <td>0.165897</td>\n",
       "      <td>0.714940</td>\n",
       "      <td>0.478832</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>-0.493764</td>\n",
       "      <td>0.916627</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.519125</td>\n",
       "      <td>0.443590</td>\n",
       "      <td>-0.778588</td>\n",
       "      <td>-1.871745</td>\n",
       "      <td>1.931386</td>\n",
       "      <td>1.138110</td>\n",
       "      <td>...</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 83 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "     sodium  electivesurgery  vent  dialysis       gcs     urine       wbc  \\\n",
       "0 -0.681964         0.859496   0.0       0.0 -0.166369 -1.396133  0.337637   \n",
       "1 -0.861765         1.482495   0.0       0.0  0.176378  0.297334  0.380078   \n",
       "2  1.059665         1.000000   1.0       0.0  0.519125 -0.543367 -0.492726   \n",
       "3 -0.117364         0.925698   0.0       0.0  0.519125  1.611408 -0.097963   \n",
       "4 -0.493764         0.916627   0.0       0.0  0.519125  0.443590 -0.778588   \n",
       "\n",
       "   temperature  respiratoryrate  heartrate    ...     m12_True  m13_True  \\\n",
       "0     3.604419         0.782521   0.643651    ...          0.0       0.0   \n",
       "1     0.293250         0.850101   0.116229    ...          1.0       1.0   \n",
       "2    -2.126451        -1.380049   0.511796    ...          0.0       1.0   \n",
       "3     0.165897         0.714940   0.478832    ...          0.0       1.0   \n",
       "4    -1.871745         1.931386   1.138110    ...          0.0       1.0   \n",
       "\n",
       "   m14_True  m15_True  m16_True  m17_True  m18_True  m19_True  m20_True  \\\n",
       "0       1.0       1.0       0.0       0.0       0.0       1.0       0.0   \n",
       "1       1.0       1.0       1.0       1.0       1.0       1.0       0.0   \n",
       "2       0.0       0.0       1.0       0.0       1.0       0.0       0.0   \n",
       "3       1.0       1.0       0.0       0.0       1.0       1.0       0.0   \n",
       "4       0.0       0.0       0.0       0.0       1.0       0.0       0.0   \n",
       "\n",
       "   km_clust  \n",
       "0         1  \n",
       "1         3  \n",
       "2         1  \n",
       "3         1  \n",
       "4         1  \n",
       "\n",
       "[5 rows x 83 columns]"
      ]
     },
     "execution_count": 45,
     "metadata": {
      "tags": []
     },
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "id": "gNNDAsJI6lML"
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "colab": {
   "name": "LR-Mixed-Main.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}