|
a |
|
b/Hierarchical/R2-LR-Hierarchical.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [ |
|
|
8 |
{ |
|
|
9 |
"name": "stderr", |
|
|
10 |
"output_type": "stream", |
|
|
11 |
"text": [ |
|
|
12 |
"/anaconda3/lib/python3.7/site-packages/psycopg2/__init__.py:144: UserWarning: The psycopg2 wheel package will be renamed from release 2.8; in order to keep installing from binary please use \"pip install psycopg2-binary\" instead. For details see: <http://initd.org/psycopg/docs/install.html#binary-install-from-pypi>.\n", |
|
|
13 |
" \"\"\")\n" |
|
|
14 |
] |
|
|
15 |
}, |
|
|
16 |
{ |
|
|
17 |
"data": { |
|
|
18 |
"text/html": [ |
|
|
19 |
" <script type=\"text/javascript\">\n", |
|
|
20 |
" window.PlotlyConfig = {MathJaxConfig: 'local'};\n", |
|
|
21 |
" if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}\n", |
|
|
22 |
" if (typeof require !== 'undefined') {\n", |
|
|
23 |
" require.undef(\"plotly\");\n", |
|
|
24 |
" requirejs.config({\n", |
|
|
25 |
" paths: {\n", |
|
|
26 |
" 'plotly': ['https://cdn.plot.ly/plotly-latest.min']\n", |
|
|
27 |
" }\n", |
|
|
28 |
" });\n", |
|
|
29 |
" require(['plotly'], function(Plotly) {\n", |
|
|
30 |
" window._Plotly = Plotly;\n", |
|
|
31 |
" });\n", |
|
|
32 |
" }\n", |
|
|
33 |
" </script>\n", |
|
|
34 |
" " |
|
|
35 |
] |
|
|
36 |
}, |
|
|
37 |
"metadata": {}, |
|
|
38 |
"output_type": "display_data" |
|
|
39 |
} |
|
|
40 |
], |
|
|
41 |
"source": [ |
|
|
42 |
"# Import libraries\n", |
|
|
43 |
"import numpy as np\n", |
|
|
44 |
"import pandas as pd\n", |
|
|
45 |
"import matplotlib.pyplot as plt\n", |
|
|
46 |
"import psycopg2\n", |
|
|
47 |
"import getpass\n", |
|
|
48 |
"import pdvega\n", |
|
|
49 |
"import plotly.graph_objs as go\n", |
|
|
50 |
"\n", |
|
|
51 |
"from plotly.offline import iplot, init_notebook_mode\n", |
|
|
52 |
"import plotly.io as pio\n", |
|
|
53 |
"from plotly.graph_objs import *\n", |
|
|
54 |
"\n", |
|
|
55 |
"# for configuring connection \n", |
|
|
56 |
"from configobj import ConfigObj\n", |
|
|
57 |
"import os\n", |
|
|
58 |
"\n", |
|
|
59 |
"%matplotlib inline\n", |
|
|
60 |
"\n", |
|
|
61 |
"\n", |
|
|
62 |
"import os\n", |
|
|
63 |
"\n", |
|
|
64 |
"\n", |
|
|
65 |
"from sklearn import linear_model\n", |
|
|
66 |
"from sklearn import metrics\n", |
|
|
67 |
"from sklearn.model_selection import train_test_split\n", |
|
|
68 |
"\n", |
|
|
69 |
"#configure the notebook for use in offline mode\n", |
|
|
70 |
"init_notebook_mode(connected=True)" |
|
|
71 |
] |
|
|
72 |
}, |
|
|
73 |
{ |
|
|
74 |
"cell_type": "code", |
|
|
75 |
"execution_count": 3, |
|
|
76 |
"metadata": {}, |
|
|
77 |
"outputs": [ |
|
|
78 |
{ |
|
|
79 |
"data": { |
|
|
80 |
"text/html": [ |
|
|
81 |
"<div>\n", |
|
|
82 |
"<style scoped>\n", |
|
|
83 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
84 |
" vertical-align: middle;\n", |
|
|
85 |
" }\n", |
|
|
86 |
"\n", |
|
|
87 |
" .dataframe tbody tr th {\n", |
|
|
88 |
" vertical-align: top;\n", |
|
|
89 |
" }\n", |
|
|
90 |
"\n", |
|
|
91 |
" .dataframe thead th {\n", |
|
|
92 |
" text-align: right;\n", |
|
|
93 |
" }\n", |
|
|
94 |
"</style>\n", |
|
|
95 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
96 |
" <thead>\n", |
|
|
97 |
" <tr style=\"text-align: right;\">\n", |
|
|
98 |
" <th></th>\n", |
|
|
99 |
" <th>Unnamed: 0</th>\n", |
|
|
100 |
" <th>hospitalid</th>\n", |
|
|
101 |
" <th>sodium</th>\n", |
|
|
102 |
" <th>electivesurgery</th>\n", |
|
|
103 |
" <th>vent</th>\n", |
|
|
104 |
" <th>dialysis</th>\n", |
|
|
105 |
" <th>gcs</th>\n", |
|
|
106 |
" <th>urine</th>\n", |
|
|
107 |
" <th>wbc</th>\n", |
|
|
108 |
" <th>temperature</th>\n", |
|
|
109 |
" <th>...</th>\n", |
|
|
110 |
" <th>m11_True</th>\n", |
|
|
111 |
" <th>m12_True</th>\n", |
|
|
112 |
" <th>m13_True</th>\n", |
|
|
113 |
" <th>m14_True</th>\n", |
|
|
114 |
" <th>m15_True</th>\n", |
|
|
115 |
" <th>m16_True</th>\n", |
|
|
116 |
" <th>m17_True</th>\n", |
|
|
117 |
" <th>m18_True</th>\n", |
|
|
118 |
" <th>m19_True</th>\n", |
|
|
119 |
" <th>m20_True</th>\n", |
|
|
120 |
" </tr>\n", |
|
|
121 |
" </thead>\n", |
|
|
122 |
" <tbody>\n", |
|
|
123 |
" <tr>\n", |
|
|
124 |
" <th>0</th>\n", |
|
|
125 |
" <td>0</td>\n", |
|
|
126 |
" <td>59.0</td>\n", |
|
|
127 |
" <td>139.0</td>\n", |
|
|
128 |
" <td>-1.0</td>\n", |
|
|
129 |
" <td>0.0</td>\n", |
|
|
130 |
" <td>0.0</td>\n", |
|
|
131 |
" <td>15.0</td>\n", |
|
|
132 |
" <td>-1.0</td>\n", |
|
|
133 |
" <td>14.7</td>\n", |
|
|
134 |
" <td>36.1</td>\n", |
|
|
135 |
" <td>...</td>\n", |
|
|
136 |
" <td>1</td>\n", |
|
|
137 |
" <td>0</td>\n", |
|
|
138 |
" <td>0</td>\n", |
|
|
139 |
" <td>1</td>\n", |
|
|
140 |
" <td>1</td>\n", |
|
|
141 |
" <td>0</td>\n", |
|
|
142 |
" <td>0</td>\n", |
|
|
143 |
" <td>0</td>\n", |
|
|
144 |
" <td>1</td>\n", |
|
|
145 |
" <td>0</td>\n", |
|
|
146 |
" </tr>\n", |
|
|
147 |
" <tr>\n", |
|
|
148 |
" <th>1</th>\n", |
|
|
149 |
" <td>1</td>\n", |
|
|
150 |
" <td>73.0</td>\n", |
|
|
151 |
" <td>134.0</td>\n", |
|
|
152 |
" <td>-1.0</td>\n", |
|
|
153 |
" <td>0.0</td>\n", |
|
|
154 |
" <td>0.0</td>\n", |
|
|
155 |
" <td>13.0</td>\n", |
|
|
156 |
" <td>-1.0</td>\n", |
|
|
157 |
" <td>14.1</td>\n", |
|
|
158 |
" <td>39.3</td>\n", |
|
|
159 |
" <td>...</td>\n", |
|
|
160 |
" <td>1</td>\n", |
|
|
161 |
" <td>0</td>\n", |
|
|
162 |
" <td>0</td>\n", |
|
|
163 |
" <td>1</td>\n", |
|
|
164 |
" <td>1</td>\n", |
|
|
165 |
" <td>0</td>\n", |
|
|
166 |
" <td>0</td>\n", |
|
|
167 |
" <td>0</td>\n", |
|
|
168 |
" <td>1</td>\n", |
|
|
169 |
" <td>0</td>\n", |
|
|
170 |
" </tr>\n", |
|
|
171 |
" <tr>\n", |
|
|
172 |
" <th>2</th>\n", |
|
|
173 |
" <td>2</td>\n", |
|
|
174 |
" <td>73.0</td>\n", |
|
|
175 |
" <td>-1.0</td>\n", |
|
|
176 |
" <td>1.0</td>\n", |
|
|
177 |
" <td>1.0</td>\n", |
|
|
178 |
" <td>0.0</td>\n", |
|
|
179 |
" <td>15.0</td>\n", |
|
|
180 |
" <td>-1.0</td>\n", |
|
|
181 |
" <td>8.0</td>\n", |
|
|
182 |
" <td>34.8</td>\n", |
|
|
183 |
" <td>...</td>\n", |
|
|
184 |
" <td>0</td>\n", |
|
|
185 |
" <td>0</td>\n", |
|
|
186 |
" <td>1</td>\n", |
|
|
187 |
" <td>0</td>\n", |
|
|
188 |
" <td>0</td>\n", |
|
|
189 |
" <td>1</td>\n", |
|
|
190 |
" <td>0</td>\n", |
|
|
191 |
" <td>1</td>\n", |
|
|
192 |
" <td>0</td>\n", |
|
|
193 |
" <td>0</td>\n", |
|
|
194 |
" </tr>\n", |
|
|
195 |
" <tr>\n", |
|
|
196 |
" <th>3</th>\n", |
|
|
197 |
" <td>3</td>\n", |
|
|
198 |
" <td>63.0</td>\n", |
|
|
199 |
" <td>137.0</td>\n", |
|
|
200 |
" <td>-1.0</td>\n", |
|
|
201 |
" <td>0.0</td>\n", |
|
|
202 |
" <td>0.0</td>\n", |
|
|
203 |
" <td>15.0</td>\n", |
|
|
204 |
" <td>-1.0</td>\n", |
|
|
205 |
" <td>10.9</td>\n", |
|
|
206 |
" <td>36.6</td>\n", |
|
|
207 |
" <td>...</td>\n", |
|
|
208 |
" <td>1</td>\n", |
|
|
209 |
" <td>0</td>\n", |
|
|
210 |
" <td>1</td>\n", |
|
|
211 |
" <td>1</td>\n", |
|
|
212 |
" <td>1</td>\n", |
|
|
213 |
" <td>0</td>\n", |
|
|
214 |
" <td>0</td>\n", |
|
|
215 |
" <td>1</td>\n", |
|
|
216 |
" <td>1</td>\n", |
|
|
217 |
" <td>0</td>\n", |
|
|
218 |
" </tr>\n", |
|
|
219 |
" <tr>\n", |
|
|
220 |
" <th>4</th>\n", |
|
|
221 |
" <td>4</td>\n", |
|
|
222 |
" <td>63.0</td>\n", |
|
|
223 |
" <td>135.0</td>\n", |
|
|
224 |
" <td>-1.0</td>\n", |
|
|
225 |
" <td>0.0</td>\n", |
|
|
226 |
" <td>0.0</td>\n", |
|
|
227 |
" <td>15.0</td>\n", |
|
|
228 |
" <td>-1.0</td>\n", |
|
|
229 |
" <td>5.9</td>\n", |
|
|
230 |
" <td>35.0</td>\n", |
|
|
231 |
" <td>...</td>\n", |
|
|
232 |
" <td>0</td>\n", |
|
|
233 |
" <td>0</td>\n", |
|
|
234 |
" <td>1</td>\n", |
|
|
235 |
" <td>0</td>\n", |
|
|
236 |
" <td>0</td>\n", |
|
|
237 |
" <td>0</td>\n", |
|
|
238 |
" <td>0</td>\n", |
|
|
239 |
" <td>1</td>\n", |
|
|
240 |
" <td>0</td>\n", |
|
|
241 |
" <td>0</td>\n", |
|
|
242 |
" </tr>\n", |
|
|
243 |
" </tbody>\n", |
|
|
244 |
"</table>\n", |
|
|
245 |
"<p>5 rows × 85 columns</p>\n", |
|
|
246 |
"</div>" |
|
|
247 |
], |
|
|
248 |
"text/plain": [ |
|
|
249 |
" Unnamed: 0 hospitalid sodium electivesurgery vent dialysis gcs \\\n", |
|
|
250 |
"0 0 59.0 139.0 -1.0 0.0 0.0 15.0 \n", |
|
|
251 |
"1 1 73.0 134.0 -1.0 0.0 0.0 13.0 \n", |
|
|
252 |
"2 2 73.0 -1.0 1.0 1.0 0.0 15.0 \n", |
|
|
253 |
"3 3 63.0 137.0 -1.0 0.0 0.0 15.0 \n", |
|
|
254 |
"4 4 63.0 135.0 -1.0 0.0 0.0 15.0 \n", |
|
|
255 |
"\n", |
|
|
256 |
" urine wbc temperature ... m11_True m12_True m13_True m14_True \\\n", |
|
|
257 |
"0 -1.0 14.7 36.1 ... 1 0 0 1 \n", |
|
|
258 |
"1 -1.0 14.1 39.3 ... 1 0 0 1 \n", |
|
|
259 |
"2 -1.0 8.0 34.8 ... 0 0 1 0 \n", |
|
|
260 |
"3 -1.0 10.9 36.6 ... 1 0 1 1 \n", |
|
|
261 |
"4 -1.0 5.9 35.0 ... 0 0 1 0 \n", |
|
|
262 |
"\n", |
|
|
263 |
" m15_True m16_True m17_True m18_True m19_True m20_True \n", |
|
|
264 |
"0 1 0 0 0 1 0 \n", |
|
|
265 |
"1 1 0 0 0 1 0 \n", |
|
|
266 |
"2 0 1 0 1 0 0 \n", |
|
|
267 |
"3 1 0 0 1 1 0 \n", |
|
|
268 |
"4 0 0 0 1 0 0 \n", |
|
|
269 |
"\n", |
|
|
270 |
"[5 rows x 85 columns]" |
|
|
271 |
] |
|
|
272 |
}, |
|
|
273 |
"execution_count": 3, |
|
|
274 |
"metadata": {}, |
|
|
275 |
"output_type": "execute_result" |
|
|
276 |
} |
|
|
277 |
], |
|
|
278 |
"source": [ |
|
|
279 |
"df2= pd.read_csv(\"Analysis.csv\")\n", |
|
|
280 |
"df2.head()" |
|
|
281 |
] |
|
|
282 |
}, |
|
|
283 |
{ |
|
|
284 |
"cell_type": "code", |
|
|
285 |
"execution_count": 4, |
|
|
286 |
"metadata": {}, |
|
|
287 |
"outputs": [ |
|
|
288 |
{ |
|
|
289 |
"data": { |
|
|
290 |
"text/plain": [ |
|
|
291 |
"(95148, 85)" |
|
|
292 |
] |
|
|
293 |
}, |
|
|
294 |
"execution_count": 4, |
|
|
295 |
"metadata": {}, |
|
|
296 |
"output_type": "execute_result" |
|
|
297 |
} |
|
|
298 |
], |
|
|
299 |
"source": [ |
|
|
300 |
"df2.shape" |
|
|
301 |
] |
|
|
302 |
}, |
|
|
303 |
{ |
|
|
304 |
"cell_type": "code", |
|
|
305 |
"execution_count": 5, |
|
|
306 |
"metadata": {}, |
|
|
307 |
"outputs": [], |
|
|
308 |
"source": [ |
|
|
309 |
"del df2['hospitalid']\n", |
|
|
310 |
"\n", |
|
|
311 |
"df2 = df2.drop(df2.columns[[0]], axis=1)" |
|
|
312 |
] |
|
|
313 |
}, |
|
|
314 |
{ |
|
|
315 |
"cell_type": "code", |
|
|
316 |
"execution_count": 6, |
|
|
317 |
"metadata": {}, |
|
|
318 |
"outputs": [], |
|
|
319 |
"source": [ |
|
|
320 |
"cols_to_norm=['gcs', 'urine', 'wbc', 'sodium',\n", |
|
|
321 |
" 'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n", |
|
|
322 |
" 'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n", |
|
|
323 |
" 'bilirubin', 'fio2', 'age', 'offset']\n", |
|
|
324 |
"\n", |
|
|
325 |
"X=df2.drop('destcopy', 1)\n", |
|
|
326 |
"y=df2['destcopy']\n", |
|
|
327 |
"df_cols = list(X) #fancy impute removes column names." |
|
|
328 |
] |
|
|
329 |
}, |
|
|
330 |
{ |
|
|
331 |
"cell_type": "markdown", |
|
|
332 |
"metadata": {}, |
|
|
333 |
"source": [ |
|
|
334 |
"**We moved all the pre-processing including splitting>imputation>Standardization to the CV iterations**" |
|
|
335 |
] |
|
|
336 |
}, |
|
|
337 |
{ |
|
|
338 |
"cell_type": "code", |
|
|
339 |
"execution_count": 7, |
|
|
340 |
"metadata": {}, |
|
|
341 |
"outputs": [ |
|
|
342 |
{ |
|
|
343 |
"data": { |
|
|
344 |
"text/plain": [ |
|
|
345 |
"Index(['sodium', 'electivesurgery', 'vent', 'dialysis', 'gcs', 'urine', 'wbc',\n", |
|
|
346 |
" 'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n", |
|
|
347 |
" 'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n", |
|
|
348 |
" 'bilirubin', 'fio2', 'age', 'thrombolytics', 'aids', 'hepaticfailure',\n", |
|
|
349 |
" 'lymphoma', 'metastaticcancer', 'leukemia', 'immunosuppression',\n", |
|
|
350 |
" 'cirrhosis', 'readmit', 'offset', 'destcopy', 'admitsource_1.0',\n", |
|
|
351 |
" 'admitsource_2.0', 'admitsource_3.0', 'admitsource_4.0',\n", |
|
|
352 |
" 'admitsource_5.0', 'admitsource_6.0', 'admitsource_7.0',\n", |
|
|
353 |
" 'admitsource_8.0', 'diaggroup_ARF', 'diaggroup_Asthma-Emphys',\n", |
|
|
354 |
" 'diaggroup_CABG', 'diaggroup_CHF', 'diaggroup_CVA', 'diaggroup_CVOther',\n", |
|
|
355 |
" 'diaggroup_CardiacArrest', 'diaggroup_ChestPainUnknown',\n", |
|
|
356 |
" 'diaggroup_Coma', 'diaggroup_DKA', 'diaggroup_GIBleed',\n", |
|
|
357 |
" 'diaggroup_GIObstruction', 'diaggroup_Neuro', 'diaggroup_Other',\n", |
|
|
358 |
" 'diaggroup_Overdose', 'diaggroup_PNA', 'diaggroup_RespMedOther',\n", |
|
|
359 |
" 'diaggroup_Sepsis', 'diaggroup_Trauma', 'diaggroup_ValveDz',\n", |
|
|
360 |
" 'gender_Male', 'gender_Other', 'm1_True', 'm2_True', 'm3_True',\n", |
|
|
361 |
" 'm4_True', 'm5_True', 'm6_True', 'm7_True', 'm8_True', 'm9_True',\n", |
|
|
362 |
" 'm10_True', 'm11_True', 'm12_True', 'm13_True', 'm14_True', 'm15_True',\n", |
|
|
363 |
" 'm16_True', 'm17_True', 'm18_True', 'm19_True', 'm20_True'],\n", |
|
|
364 |
" dtype='object')" |
|
|
365 |
] |
|
|
366 |
}, |
|
|
367 |
"execution_count": 7, |
|
|
368 |
"metadata": {}, |
|
|
369 |
"output_type": "execute_result" |
|
|
370 |
} |
|
|
371 |
], |
|
|
372 |
"source": [ |
|
|
373 |
"df2.columns" |
|
|
374 |
] |
|
|
375 |
}, |
|
|
376 |
{ |
|
|
377 |
"cell_type": "code", |
|
|
378 |
"execution_count": 8, |
|
|
379 |
"metadata": {}, |
|
|
380 |
"outputs": [], |
|
|
381 |
"source": [ |
|
|
382 |
"from sklearn import svm\n", |
|
|
383 |
"from sklearn.decomposition import TruncatedSVD\n", |
|
|
384 |
"from sklearn.metrics import classification_report\n", |
|
|
385 |
"from sklearn.model_selection import train_test_split\n", |
|
|
386 |
"from sklearn.pipeline import make_pipeline\n", |
|
|
387 |
"\n", |
|
|
388 |
"from sklearn_hierarchical_classification.classifier import HierarchicalClassifier\n", |
|
|
389 |
"from sklearn_hierarchical_classification.constants import ROOT\n", |
|
|
390 |
"from sklearn_hierarchical_classification.metrics import h_fbeta_score, multi_labeled" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"cell_type": "markdown", |
|
|
395 |
"metadata": {}, |
|
|
396 |
"source": [ |
|
|
397 |
"**Random Forest**" |
|
|
398 |
] |
|
|
399 |
}, |
|
|
400 |
{ |
|
|
401 |
"cell_type": "code", |
|
|
402 |
"execution_count": 9, |
|
|
403 |
"metadata": {}, |
|
|
404 |
"outputs": [], |
|
|
405 |
"source": [ |
|
|
406 |
"class_hierarchy = {\n", |
|
|
407 |
" ROOT: [\"1\", \"A\"],\n", |
|
|
408 |
" \"A\": [\"2\", \"B\"],\n", |
|
|
409 |
" \"B\": [\"3\", \"4\"],\n", |
|
|
410 |
" }" |
|
|
411 |
] |
|
|
412 |
}, |
|
|
413 |
{ |
|
|
414 |
"cell_type": "code", |
|
|
415 |
"execution_count": 10, |
|
|
416 |
"metadata": {}, |
|
|
417 |
"outputs": [ |
|
|
418 |
{ |
|
|
419 |
"name": "stdout", |
|
|
420 |
"output_type": "stream", |
|
|
421 |
"text": [ |
|
|
422 |
"Enabling notebook extension jupyter-js-widgets/extension...\n", |
|
|
423 |
" - Validating: \u001b[32mOK\u001b[0m\n" |
|
|
424 |
] |
|
|
425 |
} |
|
|
426 |
], |
|
|
427 |
"source": [ |
|
|
428 |
"!jupyter nbextension enable --py --sys-prefix widgetsnbextension" |
|
|
429 |
] |
|
|
430 |
}, |
|
|
431 |
{ |
|
|
432 |
"cell_type": "code", |
|
|
433 |
"execution_count": 11, |
|
|
434 |
"metadata": {}, |
|
|
435 |
"outputs": [], |
|
|
436 |
"source": [ |
|
|
437 |
"from collections import Counter" |
|
|
438 |
] |
|
|
439 |
}, |
|
|
440 |
{ |
|
|
441 |
"cell_type": "code", |
|
|
442 |
"execution_count": 12, |
|
|
443 |
"metadata": {}, |
|
|
444 |
"outputs": [ |
|
|
445 |
{ |
|
|
446 |
"name": "stderr", |
|
|
447 |
"output_type": "stream", |
|
|
448 |
"text": [ |
|
|
449 |
"Using TensorFlow backend.\n", |
|
|
450 |
"/anaconda3/lib/python3.7/site-packages/lightgbm/__init__.py:46: UserWarning:\n", |
|
|
451 |
"\n", |
|
|
452 |
"Starting from version 2.2.1, the library file in distribution wheels for macOS is built by the Apple Clang (Xcode_9.4.1) compiler.\n", |
|
|
453 |
"This means that in case of installing LightGBM from PyPI via the ``pip install lightgbm`` command, you don't need to install the gcc compiler anymore.\n", |
|
|
454 |
"Instead of that, you need to install the OpenMP library, which is required for running LightGBM on the system with the Apple Clang compiler.\n", |
|
|
455 |
"You can install the OpenMP library by the following command: ``brew install libomp``.\n", |
|
|
456 |
"\n" |
|
|
457 |
] |
|
|
458 |
}, |
|
|
459 |
{ |
|
|
460 |
"name": "stdout", |
|
|
461 |
"output_type": "stream", |
|
|
462 |
"text": [ |
|
|
463 |
"[('1', 8852), ('2', 59596), ('3', 12940), ('4', 4244)]\n" |
|
|
464 |
] |
|
|
465 |
}, |
|
|
466 |
{ |
|
|
467 |
"name": "stderr", |
|
|
468 |
"output_type": "stream", |
|
|
469 |
"text": [ |
|
|
470 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
471 |
"\n", |
|
|
472 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
473 |
"\n", |
|
|
474 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
475 |
"\n", |
|
|
476 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
477 |
"\n", |
|
|
478 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
479 |
"\n", |
|
|
480 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
481 |
"\n" |
|
|
482 |
] |
|
|
483 |
}, |
|
|
484 |
{ |
|
|
485 |
"name": "stdout", |
|
|
486 |
"output_type": "stream", |
|
|
487 |
"text": [ |
|
|
488 |
"For fold 1:\n", |
|
|
489 |
"Accuracy: 0.6075031525851198\n", |
|
|
490 |
"f-score: 0.6075031525851198\n", |
|
|
491 |
"[('1', 984), ('2', 6622), ('3', 1438), ('4', 472)]\n", |
|
|
492 |
" pre rec spe f1 geo iba sup\n", |
|
|
493 |
"\n", |
|
|
494 |
" 1 0.33 0.77 0.82 0.46 0.79 0.62 984\n", |
|
|
495 |
" 2 0.90 0.67 0.82 0.77 0.74 0.55 6622\n", |
|
|
496 |
" 3 0.32 0.30 0.88 0.31 0.52 0.25 1438\n", |
|
|
497 |
" 4 0.16 0.29 0.92 0.20 0.52 0.25 472\n", |
|
|
498 |
"\n", |
|
|
499 |
"avg / total 0.71 0.61 0.84 0.64 0.70 0.50 9516\n", |
|
|
500 |
"\n", |
|
|
501 |
"[('1', 8852), ('2', 59596), ('3', 12940), ('4', 4244)]\n" |
|
|
502 |
] |
|
|
503 |
}, |
|
|
504 |
{ |
|
|
505 |
"name": "stderr", |
|
|
506 |
"output_type": "stream", |
|
|
507 |
"text": [ |
|
|
508 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
509 |
"\n", |
|
|
510 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
511 |
"\n", |
|
|
512 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
513 |
"\n", |
|
|
514 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
515 |
"\n", |
|
|
516 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
517 |
"\n", |
|
|
518 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
519 |
"\n" |
|
|
520 |
] |
|
|
521 |
}, |
|
|
522 |
{ |
|
|
523 |
"name": "stdout", |
|
|
524 |
"output_type": "stream", |
|
|
525 |
"text": [ |
|
|
526 |
"For fold 2:\n", |
|
|
527 |
"Accuracy: 0.5763976460697772\n", |
|
|
528 |
"f-score: 0.5763976460697772\n", |
|
|
529 |
"[('1', 984), ('2', 6622), ('3', 1438), ('4', 472)]\n", |
|
|
530 |
" pre rec spe f1 geo iba sup\n", |
|
|
531 |
"\n", |
|
|
532 |
" 1 0.29 0.82 0.77 0.43 0.80 0.63 984\n", |
|
|
533 |
" 2 0.89 0.65 0.82 0.75 0.73 0.52 6622\n", |
|
|
534 |
" 3 0.26 0.21 0.90 0.23 0.43 0.17 1438\n", |
|
|
535 |
" 4 0.12 0.21 0.92 0.15 0.43 0.18 472\n", |
|
|
536 |
"\n", |
|
|
537 |
"avg / total 0.70 0.58 0.83 0.61 0.68 0.46 9516\n", |
|
|
538 |
"\n", |
|
|
539 |
"[('1', 8852), ('2', 59596), ('3', 12940), ('4', 4244)]\n" |
|
|
540 |
] |
|
|
541 |
}, |
|
|
542 |
{ |
|
|
543 |
"name": "stderr", |
|
|
544 |
"output_type": "stream", |
|
|
545 |
"text": [ |
|
|
546 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
547 |
"\n", |
|
|
548 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
549 |
"\n", |
|
|
550 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
551 |
"\n", |
|
|
552 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
553 |
"\n", |
|
|
554 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
555 |
"\n", |
|
|
556 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
557 |
"\n" |
|
|
558 |
] |
|
|
559 |
}, |
|
|
560 |
{ |
|
|
561 |
"name": "stdout", |
|
|
562 |
"output_type": "stream", |
|
|
563 |
"text": [ |
|
|
564 |
"For fold 3:\n", |
|
|
565 |
"Accuracy: 0.5468684321143338\n", |
|
|
566 |
"f-score: 0.5468684321143338\n", |
|
|
567 |
"[('1', 984), ('2', 6622), ('3', 1438), ('4', 472)]\n", |
|
|
568 |
" pre rec spe f1 geo iba sup\n", |
|
|
569 |
"\n", |
|
|
570 |
" 1 0.30 0.83 0.78 0.45 0.81 0.65 984\n", |
|
|
571 |
" 2 0.87 0.61 0.79 0.71 0.69 0.47 6622\n", |
|
|
572 |
" 3 0.21 0.18 0.88 0.19 0.40 0.15 1438\n", |
|
|
573 |
" 4 0.11 0.24 0.90 0.15 0.46 0.20 472\n", |
|
|
574 |
"\n", |
|
|
575 |
"avg / total 0.67 0.55 0.81 0.58 0.65 0.43 9516\n", |
|
|
576 |
"\n", |
|
|
577 |
"[('1', 8852), ('2', 59596), ('3', 12940), ('4', 4244)]\n" |
|
|
578 |
] |
|
|
579 |
}, |
|
|
580 |
{ |
|
|
581 |
"name": "stderr", |
|
|
582 |
"output_type": "stream", |
|
|
583 |
"text": [ |
|
|
584 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
585 |
"\n", |
|
|
586 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
587 |
"\n", |
|
|
588 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
589 |
"\n", |
|
|
590 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
591 |
"\n", |
|
|
592 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
593 |
"\n", |
|
|
594 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
595 |
"\n" |
|
|
596 |
] |
|
|
597 |
}, |
|
|
598 |
{ |
|
|
599 |
"name": "stdout", |
|
|
600 |
"output_type": "stream", |
|
|
601 |
"text": [ |
|
|
602 |
"For fold 4:\n", |
|
|
603 |
"Accuracy: 0.5755569567044977\n", |
|
|
604 |
"f-score: 0.5755569567044977\n", |
|
|
605 |
"[('1', 984), ('2', 6622), ('3', 1438), ('4', 472)]\n", |
|
|
606 |
" pre rec spe f1 geo iba sup\n", |
|
|
607 |
"\n", |
|
|
608 |
" 1 0.31 0.78 0.80 0.44 0.79 0.62 984\n", |
|
|
609 |
" 2 0.87 0.66 0.77 0.75 0.71 0.50 6622\n", |
|
|
610 |
" 3 0.23 0.14 0.91 0.18 0.36 0.12 1438\n", |
|
|
611 |
" 4 0.10 0.23 0.90 0.14 0.45 0.19 472\n", |
|
|
612 |
"\n", |
|
|
613 |
"avg / total 0.67 0.58 0.80 0.60 0.66 0.44 9516\n", |
|
|
614 |
"\n", |
|
|
615 |
"[('1', 8852), ('2', 59596), ('3', 12940), ('4', 4244)]\n" |
|
|
616 |
] |
|
|
617 |
}, |
|
|
618 |
{ |
|
|
619 |
"name": "stderr", |
|
|
620 |
"output_type": "stream", |
|
|
621 |
"text": [ |
|
|
622 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
623 |
"\n", |
|
|
624 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
625 |
"\n", |
|
|
626 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
627 |
"\n", |
|
|
628 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
629 |
"\n", |
|
|
630 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
631 |
"\n", |
|
|
632 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
633 |
"\n" |
|
|
634 |
] |
|
|
635 |
}, |
|
|
636 |
{ |
|
|
637 |
"name": "stdout", |
|
|
638 |
"output_type": "stream", |
|
|
639 |
"text": [ |
|
|
640 |
"For fold 5:\n", |
|
|
641 |
"Accuracy: 0.6144388398486759\n", |
|
|
642 |
"f-score: 0.6144388398486759\n", |
|
|
643 |
"[('1', 984), ('2', 6622), ('3', 1438), ('4', 472)]\n", |
|
|
644 |
" pre rec spe f1 geo iba sup\n", |
|
|
645 |
"\n", |
|
|
646 |
" 1 0.35 0.82 0.83 0.49 0.82 0.67 984\n", |
|
|
647 |
" 2 0.88 0.70 0.79 0.78 0.74 0.55 6622\n", |
|
|
648 |
" 3 0.26 0.19 0.90 0.22 0.41 0.16 1438\n", |
|
|
649 |
" 4 0.13 0.25 0.91 0.17 0.47 0.21 472\n", |
|
|
650 |
"\n", |
|
|
651 |
"avg / total 0.70 0.61 0.82 0.64 0.69 0.49 9516\n", |
|
|
652 |
"\n", |
|
|
653 |
"[('1', 8852), ('2', 59596), ('3', 12940), ('4', 4244)]\n" |
|
|
654 |
] |
|
|
655 |
}, |
|
|
656 |
{ |
|
|
657 |
"name": "stderr", |
|
|
658 |
"output_type": "stream", |
|
|
659 |
"text": [ |
|
|
660 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
661 |
"\n", |
|
|
662 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
663 |
"\n", |
|
|
664 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
665 |
"\n", |
|
|
666 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
667 |
"\n", |
|
|
668 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
669 |
"\n", |
|
|
670 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
671 |
"\n" |
|
|
672 |
] |
|
|
673 |
}, |
|
|
674 |
{ |
|
|
675 |
"name": "stdout", |
|
|
676 |
"output_type": "stream", |
|
|
677 |
"text": [ |
|
|
678 |
"For fold 6:\n", |
|
|
679 |
"Accuracy: 0.6281000420344682\n", |
|
|
680 |
"f-score: 0.6281000420344682\n", |
|
|
681 |
"[('1', 984), ('2', 6622), ('3', 1438), ('4', 472)]\n", |
|
|
682 |
" pre rec spe f1 geo iba sup\n", |
|
|
683 |
"\n", |
|
|
684 |
" 1 0.34 0.79 0.83 0.48 0.81 0.65 984\n", |
|
|
685 |
" 2 0.88 0.73 0.78 0.80 0.76 0.57 6622\n", |
|
|
686 |
" 3 0.24 0.18 0.90 0.21 0.40 0.15 1438\n", |
|
|
687 |
" 4 0.15 0.21 0.94 0.17 0.45 0.18 472\n", |
|
|
688 |
"\n", |
|
|
689 |
"avg / total 0.69 0.63 0.81 0.65 0.69 0.49 9516\n", |
|
|
690 |
"\n", |
|
|
691 |
"[('1', 8853), ('2', 59596), ('3', 12940), ('4', 4245)]\n" |
|
|
692 |
] |
|
|
693 |
}, |
|
|
694 |
{ |
|
|
695 |
"name": "stderr", |
|
|
696 |
"output_type": "stream", |
|
|
697 |
"text": [ |
|
|
698 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
699 |
"\n", |
|
|
700 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
701 |
"\n", |
|
|
702 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
703 |
"\n", |
|
|
704 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
705 |
"\n", |
|
|
706 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
707 |
"\n", |
|
|
708 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
709 |
"\n" |
|
|
710 |
] |
|
|
711 |
}, |
|
|
712 |
{ |
|
|
713 |
"name": "stdout", |
|
|
714 |
"output_type": "stream", |
|
|
715 |
"text": [ |
|
|
716 |
"For fold 7:\n", |
|
|
717 |
"Accuracy: 0.6210847172587766\n", |
|
|
718 |
"f-score: 0.6210847172587766\n", |
|
|
719 |
"[('1', 983), ('2', 6622), ('3', 1438), ('4', 471)]\n", |
|
|
720 |
" pre rec spe f1 geo iba sup\n", |
|
|
721 |
"\n", |
|
|
722 |
" 1 0.35 0.77 0.83 0.48 0.80 0.64 983\n", |
|
|
723 |
" 2 0.89 0.69 0.81 0.78 0.75 0.56 6622\n", |
|
|
724 |
" 3 0.31 0.31 0.88 0.31 0.52 0.26 1438\n", |
|
|
725 |
" 4 0.15 0.24 0.93 0.18 0.48 0.21 471\n", |
|
|
726 |
"\n", |
|
|
727 |
"avg / total 0.71 0.62 0.83 0.65 0.71 0.50 9514\n", |
|
|
728 |
"\n", |
|
|
729 |
"[('1', 8853), ('2', 59596), ('3', 12940), ('4', 4245)]\n" |
|
|
730 |
] |
|
|
731 |
}, |
|
|
732 |
{ |
|
|
733 |
"name": "stderr", |
|
|
734 |
"output_type": "stream", |
|
|
735 |
"text": [ |
|
|
736 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
737 |
"\n", |
|
|
738 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
739 |
"\n", |
|
|
740 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
741 |
"\n", |
|
|
742 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
743 |
"\n", |
|
|
744 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
745 |
"\n", |
|
|
746 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
747 |
"\n" |
|
|
748 |
] |
|
|
749 |
}, |
|
|
750 |
{ |
|
|
751 |
"name": "stdout", |
|
|
752 |
"output_type": "stream", |
|
|
753 |
"text": [ |
|
|
754 |
"For fold 8:\n", |
|
|
755 |
"Accuracy: 0.6231868824889636\n", |
|
|
756 |
"f-score: 0.6231868824889636\n", |
|
|
757 |
"[('1', 983), ('2', 6622), ('3', 1438), ('4', 471)]\n", |
|
|
758 |
" pre rec spe f1 geo iba sup\n", |
|
|
759 |
"\n", |
|
|
760 |
" 1 0.37 0.75 0.85 0.49 0.80 0.63 983\n", |
|
|
761 |
" 2 0.88 0.70 0.79 0.78 0.74 0.55 6622\n", |
|
|
762 |
" 3 0.30 0.29 0.88 0.30 0.51 0.24 1438\n", |
|
|
763 |
" 4 0.16 0.29 0.92 0.21 0.52 0.25 471\n", |
|
|
764 |
"\n", |
|
|
765 |
"avg / total 0.71 0.62 0.81 0.65 0.70 0.49 9514\n", |
|
|
766 |
"\n", |
|
|
767 |
"[('1', 8853), ('2', 59597), ('3', 12941), ('4', 4245)]\n" |
|
|
768 |
] |
|
|
769 |
}, |
|
|
770 |
{ |
|
|
771 |
"name": "stderr", |
|
|
772 |
"output_type": "stream", |
|
|
773 |
"text": [ |
|
|
774 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
775 |
"\n", |
|
|
776 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
777 |
"\n", |
|
|
778 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
779 |
"\n", |
|
|
780 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
781 |
"\n", |
|
|
782 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
783 |
"\n", |
|
|
784 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
785 |
"\n" |
|
|
786 |
] |
|
|
787 |
}, |
|
|
788 |
{ |
|
|
789 |
"name": "stdout", |
|
|
790 |
"output_type": "stream", |
|
|
791 |
"text": [ |
|
|
792 |
"For fold 9:\n", |
|
|
793 |
"Accuracy: 0.6289949537426409\n", |
|
|
794 |
"f-score: 0.6289949537426409\n", |
|
|
795 |
"[('1', 983), ('2', 6621), ('3', 1437), ('4', 471)]\n", |
|
|
796 |
" pre rec spe f1 geo iba sup\n", |
|
|
797 |
"\n", |
|
|
798 |
" 1 0.37 0.80 0.84 0.51 0.82 0.68 983\n", |
|
|
799 |
" 2 0.89 0.72 0.80 0.80 0.76 0.57 6621\n", |
|
|
800 |
" 3 0.29 0.22 0.90 0.25 0.45 0.19 1437\n", |
|
|
801 |
" 4 0.10 0.20 0.91 0.14 0.43 0.17 471\n", |
|
|
802 |
"\n", |
|
|
803 |
"avg / total 0.71 0.63 0.82 0.65 0.70 0.50 9512\n", |
|
|
804 |
"\n", |
|
|
805 |
"[('1', 8853), ('2', 59597), ('3', 12941), ('4', 4245)]\n" |
|
|
806 |
] |
|
|
807 |
}, |
|
|
808 |
{ |
|
|
809 |
"name": "stderr", |
|
|
810 |
"output_type": "stream", |
|
|
811 |
"text": [ |
|
|
812 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
813 |
"\n", |
|
|
814 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
815 |
"\n", |
|
|
816 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:433: FutureWarning:\n", |
|
|
817 |
"\n", |
|
|
818 |
"Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", |
|
|
819 |
"\n", |
|
|
820 |
"/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:460: FutureWarning:\n", |
|
|
821 |
"\n", |
|
|
822 |
"Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", |
|
|
823 |
"\n" |
|
|
824 |
] |
|
|
825 |
}, |
|
|
826 |
{ |
|
|
827 |
"name": "stdout", |
|
|
828 |
"output_type": "stream", |
|
|
829 |
"text": [ |
|
|
830 |
"For fold 10:\n", |
|
|
831 |
"Accuracy: 0.6135407905803196\n", |
|
|
832 |
"f-score: 0.6135407905803196\n", |
|
|
833 |
"[('1', 983), ('2', 6621), ('3', 1437), ('4', 471)]\n", |
|
|
834 |
" pre rec spe f1 geo iba sup\n", |
|
|
835 |
"\n", |
|
|
836 |
" 1 0.32 0.82 0.80 0.46 0.81 0.66 983\n", |
|
|
837 |
" 2 0.88 0.70 0.78 0.78 0.74 0.54 6621\n", |
|
|
838 |
" 3 0.34 0.17 0.94 0.23 0.40 0.15 1437\n", |
|
|
839 |
" 4 0.13 0.26 0.91 0.17 0.49 0.22 471\n", |
|
|
840 |
"\n", |
|
|
841 |
"avg / total 0.70 0.61 0.81 0.63 0.68 0.48 9512\n", |
|
|
842 |
"\n" |
|
|
843 |
] |
|
|
844 |
}, |
|
|
845 |
{ |
|
|
846 |
"data": { |
|
|
847 |
"text/plain": [ |
|
|
848 |
"<Figure size 576x396 with 0 Axes>" |
|
|
849 |
] |
|
|
850 |
}, |
|
|
851 |
"metadata": {}, |
|
|
852 |
"output_type": "display_data" |
|
|
853 |
} |
|
|
854 |
], |
|
|
855 |
"source": [ |
|
|
856 |
"from sklearn.model_selection import KFold\n", |
|
|
857 |
"from sklearn import preprocessing\n", |
|
|
858 |
"from imblearn.over_sampling import SMOTE\n", |
|
|
859 |
"from imblearn.over_sampling import SMOTENC\n", |
|
|
860 |
"from sklearn.metrics import f1_score\n", |
|
|
861 |
"from imblearn.metrics import classification_report_imbalanced\n", |
|
|
862 |
"from fancyimpute import IterativeImputer\n", |
|
|
863 |
"from yellowbrick.classifier import ROCAUC\n", |
|
|
864 |
"from sklearn.linear_model import LogisticRegression\n", |
|
|
865 |
"import numpy as np\n", |
|
|
866 |
"import pandas as pd\n", |
|
|
867 |
"from hyperopt import hp, tpe\n", |
|
|
868 |
"from hyperopt.fmin import fmin\n", |
|
|
869 |
"from sklearn.model_selection import cross_val_score, StratifiedKFold\n", |
|
|
870 |
"from sklearn.ensemble import RandomForestClassifier\n", |
|
|
871 |
"from sklearn.metrics import make_scorer\n", |
|
|
872 |
"import xgboost as xgb\n", |
|
|
873 |
"import lightgbm as lgbm\n", |
|
|
874 |
"from sklearn.model_selection import StratifiedKFold\n", |
|
|
875 |
"from collections import Counter\n", |
|
|
876 |
"import io \n", |
|
|
877 |
"\n", |
|
|
878 |
"classes=['Death','Home','Nursing Home','Rehabilitation']\n", |
|
|
879 |
"\n", |
|
|
880 |
"\n", |
|
|
881 |
"kf = StratifiedKFold(n_splits=10)\n", |
|
|
882 |
"y = y.astype(str)\n", |
|
|
883 |
"\n", |
|
|
884 |
"for fold, (train_index, test_index) in enumerate(kf.split(X,y), 1):\n", |
|
|
885 |
" X_train = X.iloc[train_index]\n", |
|
|
886 |
" y_train = y.iloc[train_index] # Based on your code, you might need a ravel call here, but I would look into how you're generating your y\n", |
|
|
887 |
" X_test = X.iloc[test_index]\n", |
|
|
888 |
" y_test = y.iloc[test_index] # See comment on ravel and y_train\n", |
|
|
889 |
" \n", |
|
|
890 |
" \n", |
|
|
891 |
"#------------------------------IMPUTE Training Set------------------------------------\n", |
|
|
892 |
" \n", |
|
|
893 |
" # Use MICE to fill in each row's missing features\n", |
|
|
894 |
" X_train = pd.DataFrame(IterativeImputer(verbose=False, sample_posterior=True).fit_transform(X_train))\n", |
|
|
895 |
" X_train.columns = df_cols\n", |
|
|
896 |
"\n", |
|
|
897 |
"#------------------------------IMPUTE Testing Set------------------------------------ \n", |
|
|
898 |
"\n", |
|
|
899 |
" # Use MICE to fill in each row's missing features\n", |
|
|
900 |
" X_test = pd.DataFrame(IterativeImputer(verbose=False, sample_posterior=True).fit_transform(X_test))\n", |
|
|
901 |
" X_test.columns = df_cols\n", |
|
|
902 |
" \n", |
|
|
903 |
"#------------------------------Standardize Testing Set------------------------------------\n", |
|
|
904 |
" \n", |
|
|
905 |
" std_scale = preprocessing.StandardScaler().fit(X_train[cols_to_norm])\n", |
|
|
906 |
" X_train[cols_to_norm] = std_scale.transform(X_train[cols_to_norm])\n", |
|
|
907 |
" X_test[cols_to_norm] = std_scale.transform(X_test[cols_to_norm])\n", |
|
|
908 |
"#------------------------------------------------------------------------------------------\n", |
|
|
909 |
"\n", |
|
|
910 |
" # Hyperparameters are optimized using hyperopt\n", |
|
|
911 |
"\n", |
|
|
912 |
" #sm = SMOTE()\n", |
|
|
913 |
" \n", |
|
|
914 |
" #sm = SMOTENC(random_state=50, categorical_features=[1,2,3,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61, 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81])\n", |
|
|
915 |
" #X_train_oversampled, y_train_oversampled = sm.fit_sample(X_train, y_train)\n", |
|
|
916 |
" print(sorted(Counter(y_train).items()))\n", |
|
|
917 |
" \n", |
|
|
918 |
" model = linear_model.LogisticRegression(class_weight='balanced') \n", |
|
|
919 |
" clf = HierarchicalClassifier(\n", |
|
|
920 |
" base_estimator=model,\n", |
|
|
921 |
" class_hierarchy=class_hierarchy,\n", |
|
|
922 |
" )\n", |
|
|
923 |
" clf.fit(X_train, y_train) \n", |
|
|
924 |
" y_pred = clf.predict(X_test)\n", |
|
|
925 |
" visualizer = ROCAUC(model, classes=classes)\n", |
|
|
926 |
" visualizer.fit(X_train, y_train) # Fit the training data to the visualizer\n", |
|
|
927 |
" visualizer.score(X_test, y_test) # Evaluate the model on the test data\n", |
|
|
928 |
" visualizer.poof(\"LR_Hierarchy_{}.pdf\".format(fold), clear_figure=True) \n", |
|
|
929 |
" print(f'For fold {fold}:')\n", |
|
|
930 |
" print(f'Accuracy: {clf.score(X_test, y_test)}')\n", |
|
|
931 |
" f1=f1_score(y_test, y_pred, average='micro')\n", |
|
|
932 |
" print(f'f-score: {f1}')\n", |
|
|
933 |
" print(sorted(Counter(y_test).items()))\n", |
|
|
934 |
" print(classification_report_imbalanced(y_test, y_pred))\n", |
|
|
935 |
" K= classification_report_imbalanced(y_test, y_pred)\n", |
|
|
936 |
" df = pd.read_fwf(io.StringIO(K))\n", |
|
|
937 |
" df.loc[\"1\":\"1\",\"pre\":\"sup\"].to_csv(\"LR-Hierarchy-D.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n", |
|
|
938 |
" df.loc[\"2\":\"2\",\"pre\":\"sup\"].to_csv(\"LR-Hierarchy-H.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n", |
|
|
939 |
" df.loc[\"3\":\"3\",\"pre\":\"sup\"].to_csv(\"LR-Hierarchy-N.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n", |
|
|
940 |
" df.loc[\"4\":\"4\",\"pre\":\"sup\"].to_csv(\"LR-Hierarchy-R.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n", |
|
|
941 |
" df.iloc[6:7,:].to_csv(\"LR-Hierarchy-avg.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n", |
|
|
942 |
"\n", |
|
|
943 |
" #\n", |
|
|
944 |
" \n", |
|
|
945 |
" #\n", |
|
|
946 |
"\n", |
|
|
947 |
" \n", |
|
|
948 |
" " |
|
|
949 |
] |
|
|
950 |
}, |
|
|
951 |
{ |
|
|
952 |
"cell_type": "code", |
|
|
953 |
"execution_count": null, |
|
|
954 |
"metadata": {}, |
|
|
955 |
"outputs": [], |
|
|
956 |
"source": [ |
|
|
957 |
"X.shape" |
|
|
958 |
] |
|
|
959 |
}, |
|
|
960 |
{ |
|
|
961 |
"cell_type": "code", |
|
|
962 |
"execution_count": null, |
|
|
963 |
"metadata": {}, |
|
|
964 |
"outputs": [], |
|
|
965 |
"source": [ |
|
|
966 |
"y.shape" |
|
|
967 |
] |
|
|
968 |
}, |
|
|
969 |
{ |
|
|
970 |
"cell_type": "code", |
|
|
971 |
"execution_count": null, |
|
|
972 |
"metadata": {}, |
|
|
973 |
"outputs": [], |
|
|
974 |
"source": [] |
|
|
975 |
} |
|
|
976 |
], |
|
|
977 |
"metadata": { |
|
|
978 |
"kernelspec": { |
|
|
979 |
"display_name": "Python 3", |
|
|
980 |
"language": "python", |
|
|
981 |
"name": "python3" |
|
|
982 |
}, |
|
|
983 |
"language_info": { |
|
|
984 |
"codemirror_mode": { |
|
|
985 |
"name": "ipython", |
|
|
986 |
"version": 3 |
|
|
987 |
}, |
|
|
988 |
"file_extension": ".py", |
|
|
989 |
"mimetype": "text/x-python", |
|
|
990 |
"name": "python", |
|
|
991 |
"nbconvert_exporter": "python", |
|
|
992 |
"pygments_lexer": "ipython3", |
|
|
993 |
"version": "3.7.1" |
|
|
994 |
} |
|
|
995 |
}, |
|
|
996 |
"nbformat": 4, |
|
|
997 |
"nbformat_minor": 2 |
|
|
998 |
} |