2232 lines (2232 with data), 115.3 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"source": [
"# Import libraries\n",
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import getpass\n",
"import pdvega\n",
"import plotly.graph_objs as go\n",
"\n",
"from plotly.offline import iplot, init_notebook_mode\n",
"import plotly.io as pio\n",
"from plotly.graph_objs import *\n",
"\n",
"# for configuring connection \n",
"from configobj import ConfigObj\n",
"import os\n",
"\n",
"%matplotlib inline\n",
"\n",
"\n",
"import os\n",
"\n",
"\n",
"from sklearn import linear_model\n",
"from sklearn import metrics\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"#configure the notebook for use in offline mode\n",
"init_notebook_mode(connected=True)"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
],
"text/vnd.plotly.v1+html": [
"<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
]
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 2,
"source": [
"df2= pd.read_csv(\"analysis.csv\")"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 3,
"source": [
"df2.head()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>hospitalid</th>\n",
" <th>sodium</th>\n",
" <th>electivesurgery</th>\n",
" <th>vent</th>\n",
" <th>dialysis</th>\n",
" <th>gcs</th>\n",
" <th>urine</th>\n",
" <th>wbc</th>\n",
" <th>temperature</th>\n",
" <th>...</th>\n",
" <th>m11_True</th>\n",
" <th>m12_True</th>\n",
" <th>m13_True</th>\n",
" <th>m14_True</th>\n",
" <th>m15_True</th>\n",
" <th>m16_True</th>\n",
" <th>m17_True</th>\n",
" <th>m18_True</th>\n",
" <th>m19_True</th>\n",
" <th>m20_True</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>59.0</td>\n",
" <td>139.0</td>\n",
" <td>-1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>15.0</td>\n",
" <td>-1.0</td>\n",
" <td>14.7</td>\n",
" <td>36.1</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>73.0</td>\n",
" <td>134.0</td>\n",
" <td>-1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>13.0</td>\n",
" <td>-1.0</td>\n",
" <td>14.1</td>\n",
" <td>39.3</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>73.0</td>\n",
" <td>-1.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>15.0</td>\n",
" <td>-1.0</td>\n",
" <td>8.0</td>\n",
" <td>34.8</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>63.0</td>\n",
" <td>137.0</td>\n",
" <td>-1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>15.0</td>\n",
" <td>-1.0</td>\n",
" <td>10.9</td>\n",
" <td>36.6</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>63.0</td>\n",
" <td>135.0</td>\n",
" <td>-1.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>15.0</td>\n",
" <td>-1.0</td>\n",
" <td>5.9</td>\n",
" <td>35.0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 85 columns</p>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 hospitalid sodium electivesurgery vent dialysis gcs \\\n",
"0 0 59.0 139.0 -1.0 0.0 0.0 15.0 \n",
"1 1 73.0 134.0 -1.0 0.0 0.0 13.0 \n",
"2 2 73.0 -1.0 1.0 1.0 0.0 15.0 \n",
"3 3 63.0 137.0 -1.0 0.0 0.0 15.0 \n",
"4 4 63.0 135.0 -1.0 0.0 0.0 15.0 \n",
"\n",
" urine wbc temperature ... m11_True m12_True m13_True m14_True \\\n",
"0 -1.0 14.7 36.1 ... 1 0 0 1 \n",
"1 -1.0 14.1 39.3 ... 1 0 0 1 \n",
"2 -1.0 8.0 34.8 ... 0 0 1 0 \n",
"3 -1.0 10.9 36.6 ... 1 0 1 1 \n",
"4 -1.0 5.9 35.0 ... 0 0 1 0 \n",
"\n",
" m15_True m16_True m17_True m18_True m19_True m20_True \n",
"0 1 0 0 0 1 0 \n",
"1 1 0 0 0 1 0 \n",
"2 0 1 0 1 0 0 \n",
"3 1 0 0 1 1 0 \n",
"4 0 0 0 1 0 0 \n",
"\n",
"[5 rows x 85 columns]"
]
},
"metadata": {},
"execution_count": 3
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"del df2['hospitalid']\n",
"\n",
"df2 = df2.drop(df2.columns[[0]], axis=1)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"df2.shape"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(95148, 83)"
]
},
"metadata": {},
"execution_count": 5
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"**We moved all the pre-processing including splitting>imputation>Standardization to the CV iterations**"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"cols_to_norm=['gcs', 'urine', 'wbc', 'sodium',\n",
" 'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n",
" 'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n",
" 'bilirubin', 'fio2', 'age', 'offset']\n",
"\n",
"X=df2.drop('destcopy', 1)\n",
"y=df2['destcopy']\n",
"df_cols = list(X) #fancy impute removes column names."
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"# Load in our libraries\n",
"import pandas as pd\n",
"import numpy as np\n",
"import re\n",
"import sklearn\n",
"import xgboost as xgb\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"import plotly.offline as py\n",
"py.init_notebook_mode(connected=True)\n",
"import plotly.graph_objs as go\n",
"import plotly.tools as tls\n",
"\n",
"import warnings\n",
"warnings.filterwarnings('ignore')\n",
"\n",
"# Going to use these 5 base models for the stacking\n",
"from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier, \n",
" GradientBoostingClassifier, ExtraTreesClassifier)\n",
"from sklearn.svm import SVC\n",
"from sklearn.model_selection import KFold\n",
"from sklearn.linear_model import LogisticRegression"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
],
"text/vnd.plotly.v1+html": [
"<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
]
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 9,
"source": [
"from sklearn.model_selection import StratifiedKFold"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 10,
"source": [
"\n",
"classes=['Death','Home','Nursing Home','Rehabilitation']\n",
"\n",
"kf_m = StratifiedKFold(n_splits=10)\n",
"\n",
"\n",
"\n",
"# Class to extend the Sklearn classifier\n",
"class SklearnHelper(object):\n",
" def __init__(self, clf, seed=0, params=None):\n",
" params['random_state'] = seed\n",
" self.clf = clf(**params)\n",
"\n",
" def train(self, x_train, y_train):\n",
" self.clf.fit(x_train, y_train)\n",
"\n",
" def predict(self, x):\n",
" return self.clf.predict(x)\n",
"\n",
" def fit(self,x,y):\n",
" return self.clf.fit(x,y)\n",
"\n",
" def feature_importances(self,x,y):\n",
" return(self.clf.fit(x,y).feature_importances_)\n",
" \n",
"\n",
"\n",
"\n",
"#-------------------------------------------------------------\n",
"\n",
"\n",
"\n",
"\n",
"#------------------------------------------\n",
"\n",
"rf_params = {\n",
" 'n_jobs': -1,\n",
" 'n_estimators': 400,\n",
" 'warm_start': True, \n",
" #'max_features': 0.2,\n",
" 'max_depth': 30,\n",
" 'min_samples_leaf': 2,\n",
" 'max_features' : 0.8,\n",
" 'verbose': 0,\n",
" 'criterion':'gini'\n",
"}\n",
"\n",
"\n",
"# Extra Trees Parameters\n",
"et_params = {\n",
" 'n_jobs': -1,\n",
" 'n_estimators':500,\n",
" #'max_features': 0.5,\n",
" 'max_depth': 8,\n",
" 'min_samples_leaf': 2,\n",
" 'verbose': 0\n",
"}\n",
"\n",
"# AdaBoost parameters\n",
"ada_params = {\n",
" 'n_estimators': 500,\n",
" 'learning_rate' : 0.75\n",
"}\n",
"\n",
"# Gradient Boosting parameters\n",
"gb_params = {\n",
" 'n_estimators': 500,\n",
" #'max_features': 0.2,\n",
" 'max_depth': 5,\n",
" 'min_samples_leaf': 2,\n",
" 'verbose': 0\n",
"}\n",
"\n",
"\n",
"\n",
"# Support Vector Classifier parameters \n",
"lr_params = {\n",
" 'penalty' : 'l1',\n",
" 'tol' : 6.75e-05,\n",
" 'C' : 2.5,\n",
" 'max_iter': 66\n",
" }\n",
"\n"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"**Random Forest**"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 11,
"source": [
"from collections import Counter"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 12,
"source": [
"from sklearn.model_selection import KFold\n",
"from sklearn import preprocessing\n",
"from imblearn.over_sampling import SMOTENC\n",
"from sklearn.metrics import f1_score\n",
"from yellowbrick.classifier import ROCAUC\n",
"from sklearn.linear_model import LogisticRegression\n",
"from numpy import loadtxt\n",
"import os\n",
"os.environ['KMP_DUPLICATE_LIB_OK']='True'\n",
"from xgboost import XGBClassifier\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import accuracy_score\n",
"from sklearn.ensemble import AdaBoostClassifier\n",
"from sklearn.datasets import make_classification\n",
"from sklearn.model_selection import StratifiedKFold\n",
"import io \n",
"\n",
"\n",
"\n",
"for fold, (train_index, test_index) in enumerate(kf_m.split(X,y), 1):\n",
" X_train = X.iloc[train_index]\n",
" y_train = y.iloc[train_index] # Based on your code, you might need a ravel call here, but I would look into how you're generating your y\n",
" X_test = X.iloc[test_index]\n",
" y_test = y.iloc[test_index] # See comment on ravel and y_train\n",
" \n",
" \n",
"#------------------------------Standardize Testing Set------------------------------------\n",
" \n",
" std_scale = preprocessing.StandardScaler().fit(X_train[cols_to_norm])\n",
" X_train[cols_to_norm] = std_scale.transform(X_train[cols_to_norm])\n",
" X_test[cols_to_norm] = std_scale.transform(X_test[cols_to_norm])\n",
"#------------------------------------------------------------------------------------------\n",
"\n",
" # Hyperparameters are optimized using hyperopt\n",
"\n",
"\n",
"\n",
"# Class to extend XGboost classifer\n",
" sm = SMOTENC(random_state=50, categorical_features=[1,2,3,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61, 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81])\n",
" X_train_oversampled, y_train_oversampled = sm.fit_sample(X_train, y_train)\n",
" print(sorted(Counter(y_train_oversampled).items()))\n",
" \n",
"# --------------- Let's Start the fun ------------------------\n",
"\n",
" # Some useful parameters which will come in handy later on\n",
" ntrain = X_train_oversampled.shape[0]\n",
" print(ntrain)\n",
" ntest = X_test.shape[0]\n",
" SEED = 0 # for reproducibility\n",
" # set folds for out-of-fold prediction\n",
" #kf = KFold(ntrain, n_split=5, random_state=SEED)\n",
" \n",
" def get_oof(clf, x_train, y_train, x_test):\n",
" oof_train = np.zeros((ntrain,))\n",
" oof_test = np.zeros((ntest,))\n",
" oof_test_skf = np.empty((10, ntest))\n",
"\n",
"\n",
" for i, (train_index, test_index) in enumerate(kf_m.split(x_train, y_train)):\n",
" x_tr = x_train[train_index]\n",
" y_tr = y_train[train_index]\n",
" x_te = x_train[test_index]\n",
"\n",
" clf.train(x_tr, y_tr)\n",
" \n",
" oof_train[test_index] = clf.predict(x_te)\n",
" oof_test_skf[i, :] = clf.predict(x_test)\n",
"\n",
" oof_test[:] = oof_test_skf.mean(axis=0)\n",
" return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1)\n",
" \n",
" # Create 5 objects that represent our 4 models\n",
" #rf = SklearnHelper(clf=RandomForestClassifier, seed=SEED, params=rf_params)\n",
" et = SklearnHelper(clf=ExtraTreesClassifier, seed=SEED, params=et_params)\n",
" #ada = SklearnHelper(clf=AdaBoostClassifier, seed=SEED, params=ada_params)\n",
" gb = SklearnHelper(clf=GradientBoostingClassifier, seed=SEED, params=gb_params)\n",
" #lr = SklearnHelper(clf=LogisticRegression, seed=SEED, params=lr_params)\n",
"\n",
" #------------------------------------------\n",
" # Create our OOF train and test predictions. These base results will be used as new features\n",
" et_oof_train, et_oof_test = get_oof(et, X_train_oversampled, y_train_oversampled, X_test) # Extra Trees\n",
" #rf_oof_train, rf_oof_test = get_oof(rf,X_train_oversampled, y_train_oversampled, X_test) # Random Forest\n",
" #ada_oof_train, ada_oof_test = get_oof(ada, X_train_oversampled, y_train_oversampled, X_test) # AdaBoost \n",
" gb_oof_train, gb_oof_test = get_oof(gb,X_train_oversampled, y_train_oversampled, X_test) # Gradient Boost\n",
" #lr_oof_train, lr_oof_test = get_oof(lr,X_train_oversampled, y_train_oversampled, X_test) # Support Vector Classifier\n",
"\n",
" print(\"Training is complete\")\n",
"\n",
"\n",
"\n",
" #rf_features = rf.feature_importances(X_train_oversampled,y_train_oversampled).tolist()\n",
" et_features = et.feature_importances(X_train_oversampled, y_train_oversampled).tolist()\n",
" #ada_features = ada.feature_importances(X_train_oversampled, y_train_oversampled).tolist()\n",
" gb_features = gb.feature_importances(X_train_oversampled, y_train_oversampled).tolist()\n",
" #lr_features=(map(abs,lr_features)) / (abs(lr_fit.coef_).max())\n",
"\n",
"\n",
"\n",
" cols = df2.drop('destcopy', 1).columns.values\n",
" # Create a dataframe with features\n",
" feature_dataframe = pd.DataFrame( {'features': cols,\n",
" \n",
" 'Extra Trees feature importances': et_features,\n",
" \n",
" 'Gradient Boost feature importances': gb_features,\n",
" #'LR feature importances': lr_features\n",
" })\n",
"\n",
"\n",
"\n",
"\n",
" # Create a dataframe with features\n",
"\n",
"\n",
"\n",
"\n",
" # Scatter plot \n",
" trace = go.Scatter(\n",
" y = feature_dataframe['Extra Trees feature importances'].values,\n",
" x = feature_dataframe['features'].values,\n",
" mode='markers',\n",
" marker=dict(\n",
" sizemode = 'diameter',\n",
" sizeref = 1,\n",
" size = 25,\n",
" # size= feature_dataframe['AdaBoost feature importances'].values,\n",
" #color = np.random.randn(500), #set color equal to a variable\n",
" color = feature_dataframe['Extra Trees feature importances'].values,\n",
" colorscale='Portland',\n",
" showscale=True\n",
" ),\n",
" text = feature_dataframe['features'].values\n",
" )\n",
" data = [trace]\n",
"\n",
" layout= go.Layout(\n",
" autosize= True,\n",
" title= 'Extra Trees Feature Importance',\n",
" hovermode= 'closest',\n",
" # xaxis= dict(\n",
" # title= 'Pop',\n",
" # ticklen= 5,\n",
" # zeroline= False,\n",
" # gridwidth= 2,\n",
" # ),\n",
" yaxis=dict(\n",
" title= 'Feature Importance',\n",
" ticklen= 5,\n",
" gridwidth= 2\n",
" ),\n",
" showlegend= False\n",
" )\n",
" fig = go.Figure(data=data, layout=layout)\n",
" py.iplot(fig,filename='scatter2010')\n",
"\n",
"\n",
"\n",
" # Scatter plot \n",
" trace = go.Scatter(\n",
" y = feature_dataframe['Gradient Boost feature importances'].values,\n",
" x = feature_dataframe['features'].values,\n",
" mode='markers',\n",
" marker=dict(\n",
" sizemode = 'diameter',\n",
" sizeref = 1,\n",
" size = 25,\n",
" # size= feature_dataframe['AdaBoost feature importances'].values,\n",
" #color = np.random.randn(500), #set color equal to a variable\n",
" color = feature_dataframe['Gradient Boost feature importances'].values,\n",
" colorscale='Portland',\n",
" showscale=True\n",
" ),\n",
" text = feature_dataframe['features'].values\n",
" )\n",
" data = [trace]\n",
"\n",
" layout= go.Layout(\n",
" autosize= True,\n",
" title= 'Gradient Boosting Feature Importance',\n",
" hovermode= 'closest',\n",
" # xaxis= dict(\n",
" # title= 'Pop',\n",
" # ticklen= 5,\n",
" # zeroline= False,\n",
" # gridwidth= 2,\n",
" # ),\n",
" yaxis=dict(\n",
" title= 'Feature Importance',\n",
" ticklen= 5,\n",
" gridwidth= 2\n",
" ),\n",
" showlegend= False\n",
" )\n",
" fig = go.Figure(data=data, layout=layout)\n",
" py.iplot(fig,filename='scatter2010')\n",
"\n",
" feature_dataframe['mean'] = feature_dataframe.mean(axis= 1) # axis = 1 computes the mean row-wise\n",
" feature_dataframe.head(3)\n",
"\n",
" yv = feature_dataframe['mean'].values\n",
" x = feature_dataframe['features'].values\n",
" data = [go.Bar(\n",
" x= x,\n",
" y= yv,\n",
" width = 0.5,\n",
" marker=dict(\n",
" color = feature_dataframe['mean'].values,\n",
" colorscale='Portland',\n",
" showscale=True,\n",
" reversescale = False\n",
" ),\n",
" opacity=0.6\n",
" )]\n",
"\n",
" layout= go.Layout(\n",
" autosize= True,\n",
" title= 'Barplots of Mean Feature Importance',\n",
" hovermode= 'closest',\n",
" # xaxis= dict(\n",
" # title= 'Pop',\n",
" # ticklen= 5,\n",
" # zeroline= False,\n",
" # gridwidth= 2,\n",
" # ),\n",
" yaxis=dict(\n",
" title= 'Feature Importance',\n",
" ticklen= 5,\n",
" gridwidth= 2\n",
" ),\n",
" showlegend= False\n",
" )\n",
" fig = go.Figure(data=data, layout=layout)\n",
" py.iplot(fig, filename='bar-direct-labels')\n",
"\n",
"\n",
"\n",
"\n",
" base_predictions_train = pd.DataFrame( {\n",
" 'ExtraTrees': et_oof_train.ravel(),\n",
" \n",
" 'GradientBoost': gb_oof_train.ravel(),\n",
" #'LR': lr_oof_train.ravel()\n",
" })\n",
" base_predictions_train.head()\n",
"\n",
" data = [\n",
" go.Heatmap(\n",
" z= base_predictions_train.astype(float).corr().values ,\n",
" x=base_predictions_train.columns.values,\n",
" y= base_predictions_train.columns.values,\n",
" colorscale='Viridis',\n",
" showscale=True,\n",
" reversescale = True\n",
" )\n",
" ]\n",
" py.iplot(data, filename='labelled-heatmap')\n",
"\n",
" x_train = np.concatenate(( et_oof_train,gb_oof_train), axis=1)\n",
" x_test = np.concatenate(( et_oof_test, gb_oof_test), axis=1)\n",
" \n",
" gbm = RandomForestClassifier().fit(x_train,y_train_oversampled)\n",
" y_pred = gbm.predict(x_test)\n",
" visualizer = ROCAUC(gbm, classes=classes)\n",
" visualizer.fit(x_train, y_train_oversampled) # Fit the training data to the visualizer\n",
" visualizer.score(x_test, y_test) # Evaluate the model on the test data\n",
" visualizer.poof(\"Ensembel_{}.pdf\".format(fold), clear_figure=True) \n",
" print(f'For fold {fold}:')\n",
" print(f'Accuracy: {gbm.score(x_test, y_test)}')\n",
" f1=f1_score(y_test, y_pred, average='micro')\n",
" print(f'f-score: {f1}')\n",
" print(classification_report_imbalanced(y_test, y_pred))\n",
" K= classification_report_imbalanced(y_test, y_pred)\n",
" df = pd.read_fwf(io.StringIO(K))\n",
" df.loc[\"1\":\"1\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-D.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
" df.loc[\"2\":\"2\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-H.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
" df.loc[\"3\":\"3\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-N.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
" df.loc[\"4\":\"4\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-R.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
" df.iloc[6:7,:].to_csv(\"RF-Ensemble-avg.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
" \n",
" "
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[(1, 59596), (2, 59596), (3, 59596), (4, 59596)]\n",
"238384\n",
"Training is complete\n"
]
},
{
"output_type": "display_data",
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"marker": {
"color": [
0.0018353646817492182,
0.05084310545549719,
0.09400970408912715,
0.0009886418699209191,
0.10234222172294358,
0.003640032842124243,
0.0013646024310890242,
0.003016195056874061,
0.007971256941994166,
0.004620637010899481,
0.005530885089654668,
0.004322134153054816,
0.019205862429324715,
0.002515465892167688,
0.0029068529574578974,
0.0034366571531583533,
0.007804291207740086,
0.009402396653016296,
0.0018958531833847049,
0.002110420701936828,
0.038700339733758235,
0.03423588600963781,
0.00817997089251627,
0.000002642167259916031,
0.00013126404080853596,
0.000013986071937127094,
0.00034378765813338706,
0.000020677034739334597,
0.0009338911010296967,
0.0001707054178427359,
0.0011383842741308104,
0.0009118602546884352,
0.02020044289867789,
0.006722478106964732,
0.00003362408612181299,
0.010061882271833413,
0.000022615551677283513,
0.0003677843800595879,
0.013704607900350243,
0.007208557871758271,
0.00026973301527727416,
0.008129624547063242,
0.014065248845423622,
0.004248744953256545,
0.06376424950946484,
0.011617612464246977,
0.05976497182742223,
0.0004453574258103735,
0.0005074781663826736,
0.033473028923271225,
0.014834521177518382,
0.00022639718661120363,
0.005806196675825123,
0.021814353144357184,
0.014162892666176269,
0.0010164493656439567,
0.005271419199920207,
0.03845638943926816,
0.021141805218045706,
0.006183774361108017,
0.0032385940401626267,
0.000004525283649994152,
0.0017687513793295886,
0.04464062601841449,
0.002590304435506645,
0.031068104371901287,
0.0031761755250237435,
0.0014848938806685972,
0.00014321109881672463,
0.00017648741137150546,
0.0001727334966912723,
0.002155924445924486,
0.023218428487430897,
0.0022595503546761217,
0.003996836103398738,
0.019780160281208,
0.020686656005668783,
0.0021768086898221904,
0.0020361736675598993,
0.0051595512410654455,
0.018875900987376886,
0.013121385435198118
],
"colorscale": "Portland",
"showscale": true,
"size": 25,
"sizemode": "diameter",
"sizeref": 1
},
"mode": "markers",
"text": [
"sodium",
"electivesurgery",
"vent",
"dialysis",
"gcs",
"urine",
"wbc",
"temperature",
"respiratoryrate",
"heartrate",
"meanbp",
"creatinine",
"ph",
"hematocrit",
"albumin",
"pao2",
"pco2",
"bun",
"glucose",
"bilirubin",
"fio2",
"age",
"thrombolytics",
"aids",
"hepaticfailure",
"lymphoma",
"metastaticcancer",
"leukemia",
"immunosuppression",
"cirrhosis",
"readmit",
"offset",
"admitsource_1.0",
"admitsource_2.0",
"admitsource_3.0",
"admitsource_4.0",
"admitsource_5.0",
"admitsource_6.0",
"admitsource_7.0",
"admitsource_8.0",
"diaggroup_ARF",
"diaggroup_Asthma-Emphys",
"diaggroup_CABG",
"diaggroup_CHF",
"diaggroup_CVA",
"diaggroup_CVOther",
"diaggroup_CardiacArrest",
"diaggroup_ChestPainUnknown",
"diaggroup_Coma",
"diaggroup_DKA",
"diaggroup_GIBleed",
"diaggroup_GIObstruction",
"diaggroup_Neuro",
"diaggroup_Other",
"diaggroup_Overdose",
"diaggroup_PNA",
"diaggroup_RespMedOther",
"diaggroup_Sepsis",
"diaggroup_Trauma",
"diaggroup_ValveDz",
"gender_Male",
"gender_Other",
"m1_True",
"m2_True",
"m3_True",
"m4_True",
"m5_True",
"m6_True",
"m7_True",
"m8_True",
"m9_True",
"m10_True",
"m11_True",
"m12_True",
"m13_True",
"m14_True",
"m15_True",
"m16_True",
"m17_True",
"m18_True",
"m19_True",
"m20_True"
],
"type": "scatter",
"uid": "ed896635-15d8-49be-ab7b-626cd70d9f44",
"x": [
"sodium",
"electivesurgery",
"vent",
"dialysis",
"gcs",
"urine",
"wbc",
"temperature",
"respiratoryrate",
"heartrate",
"meanbp",
"creatinine",
"ph",
"hematocrit",
"albumin",
"pao2",
"pco2",
"bun",
"glucose",
"bilirubin",
"fio2",
"age",
"thrombolytics",
"aids",
"hepaticfailure",
"lymphoma",
"metastaticcancer",
"leukemia",
"immunosuppression",
"cirrhosis",
"readmit",
"offset",
"admitsource_1.0",
"admitsource_2.0",
"admitsource_3.0",
"admitsource_4.0",
"admitsource_5.0",
"admitsource_6.0",
"admitsource_7.0",
"admitsource_8.0",
"diaggroup_ARF",
"diaggroup_Asthma-Emphys",
"diaggroup_CABG",
"diaggroup_CHF",
"diaggroup_CVA",
"diaggroup_CVOther",
"diaggroup_CardiacArrest",
"diaggroup_ChestPainUnknown",
"diaggroup_Coma",
"diaggroup_DKA",
"diaggroup_GIBleed",
"diaggroup_GIObstruction",
"diaggroup_Neuro",
"diaggroup_Other",
"diaggroup_Overdose",
"diaggroup_PNA",
"diaggroup_RespMedOther",
"diaggroup_Sepsis",
"diaggroup_Trauma",
"diaggroup_ValveDz",
"gender_Male",
"gender_Other",
"m1_True",
"m2_True",
"m3_True",
"m4_True",
"m5_True",
"m6_True",
"m7_True",
"m8_True",
"m9_True",
"m10_True",
"m11_True",
"m12_True",
"m13_True",
"m14_True",
"m15_True",
"m16_True",
"m17_True",
"m18_True",
"m19_True",
"m20_True"
],
"y": [
0.0018353646817492182,
0.05084310545549719,
0.09400970408912715,
0.0009886418699209191,
0.10234222172294358,
0.003640032842124243,
0.0013646024310890242,
0.003016195056874061,
0.007971256941994166,
0.004620637010899481,
0.005530885089654668,
0.004322134153054816,
0.019205862429324715,
0.002515465892167688,
0.0029068529574578974,
0.0034366571531583533,
0.007804291207740086,
0.009402396653016296,
0.0018958531833847049,
0.002110420701936828,
0.038700339733758235,
0.03423588600963781,
0.00817997089251627,
0.000002642167259916031,
0.00013126404080853596,
0.000013986071937127094,
0.00034378765813338706,
0.000020677034739334597,
0.0009338911010296967,
0.0001707054178427359,
0.0011383842741308104,
0.0009118602546884352,
0.02020044289867789,
0.006722478106964732,
0.00003362408612181299,
0.010061882271833413,
0.000022615551677283513,
0.0003677843800595879,
0.013704607900350243,
0.007208557871758271,
0.00026973301527727416,
0.008129624547063242,
0.014065248845423622,
0.004248744953256545,
0.06376424950946484,
0.011617612464246977,
0.05976497182742223,
0.0004453574258103735,
0.0005074781663826736,
0.033473028923271225,
0.014834521177518382,
0.00022639718661120363,
0.005806196675825123,
0.021814353144357184,
0.014162892666176269,
0.0010164493656439567,
0.005271419199920207,
0.03845638943926816,
0.021141805218045706,
0.006183774361108017,
0.0032385940401626267,
0.000004525283649994152,
0.0017687513793295886,
0.04464062601841449,
0.002590304435506645,
0.031068104371901287,
0.0031761755250237435,
0.0014848938806685972,
0.00014321109881672463,
0.00017648741137150546,
0.0001727334966912723,
0.002155924445924486,
0.023218428487430897,
0.0022595503546761217,
0.003996836103398738,
0.019780160281208,
0.020686656005668783,
0.0021768086898221904,
0.0020361736675598993,
0.0051595512410654455,
0.018875900987376886,
0.013121385435198118
]
}
],
"layout": {
"autosize": true,
"hovermode": "closest",
"showlegend": false,
"title": {
"text": "Extra Trees Feature Importance"
},
"yaxis": {
"gridwidth": 2,
"ticklen": 5,
"title": {
"text": "Feature Importance"
}
}
}
},
"text/html": [
"<div id=\"724f57ba-d509-454b-999a-e0d2f64c494b\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {\n",
" Plotly.newPlot(\"724f57ba-d509-454b-999a-e0d2f64c494b\", [{\"marker\": {\"color\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"type\": \"scatter\", \"uid\": \"ed896635-15d8-49be-ab7b-626cd70d9f44\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Extra Trees Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {window._Plotly.Plots.resize(document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\"));};})</script>"
],
"text/vnd.plotly.v1+html": [
"<div id=\"724f57ba-d509-454b-999a-e0d2f64c494b\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {\n",
" Plotly.newPlot(\"724f57ba-d509-454b-999a-e0d2f64c494b\", [{\"marker\": {\"color\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"type\": \"scatter\", \"uid\": \"ed896635-15d8-49be-ab7b-626cd70d9f44\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Extra Trees Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {window._Plotly.Plots.resize(document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\"));};})</script>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"marker": {
"color": [
0.02895100008920424,
0.01940889181967343,
0.01713397112196333,
0.0006888048715839917,
0.19943724634884952,
0.02533979514667484,
0.01876847510296464,
0.059907484539022726,
0.03118646710646018,
0.03090449684447332,
0.030793189430916895,
0.02089485838046929,
0.00879895366559916,
0.01259603502926633,
0.014804259064389239,
0.006116415474074245,
0.006781288603417748,
0.04069577405038757,
0.016778793438278258,
0.01897283888878102,
0.01832390108747583,
0.07812599893362324,
0.002962254344109083,
0.000042048554744753824,
0.0002238103351767069,
0.00009523997474768742,
0.0005200448443643561,
0.00016872489921494353,
0.0005661422812375212,
0.0002791824804045882,
0.0007312175206979133,
0.04873564675659822,
0.01634749861630543,
0.0017569377442036523,
0.0001913455363586476,
0.006714635293616546,
0.00008449044682818052,
0.00030841006190384545,
0.0032686970169763445,
0.005871734202759891,
0.0019213571600408086,
0.004536967337591905,
0.006859050935355847,
0.005319202569766147,
0.02782732741683144,
0.00516748393921808,
0.021132005357644496,
0.0011644991203162115,
0.0027817190845017253,
0.006112789646132433,
0.008028640083417802,
0.0012692347381076123,
0.005863116227885496,
0.011362942040987284,
0.009588107560505321,
0.003230215272296569,
0.005562687657783538,
0.014814582870448472,
0.013788101856366882,
0.004404936157351929,
0.005287599611263047,
0.00001575200082121126,
0.00008180812195822928,
0.008547861985514006,
0.002768742233742037,
0.01292689711014233,
0.0004311241532687182,
0.00034245906354993526,
0.0001626202609141136,
0.00019376841710366558,
0.00005846849317033116,
0.0005971032709410448,
0.000006173066489507722,
0.0007804211444204773,
0.0006015691500332959,
0.000013881165602887428,
0.00004166988296844418,
0.00002905911173326329,
0.001215075633558963,
0.0014923308590539296,
0.0000014489417273680594,
0.009392199341675855
],
"colorscale": "Portland",
"showscale": true,
"size": 25,
"sizemode": "diameter",
"sizeref": 1
},
"mode": "markers",
"text": [
"sodium",
"electivesurgery",
"vent",
"dialysis",
"gcs",
"urine",
"wbc",
"temperature",
"respiratoryrate",
"heartrate",
"meanbp",
"creatinine",
"ph",
"hematocrit",
"albumin",
"pao2",
"pco2",
"bun",
"glucose",
"bilirubin",
"fio2",
"age",
"thrombolytics",
"aids",
"hepaticfailure",
"lymphoma",
"metastaticcancer",
"leukemia",
"immunosuppression",
"cirrhosis",
"readmit",
"offset",
"admitsource_1.0",
"admitsource_2.0",
"admitsource_3.0",
"admitsource_4.0",
"admitsource_5.0",
"admitsource_6.0",
"admitsource_7.0",
"admitsource_8.0",
"diaggroup_ARF",
"diaggroup_Asthma-Emphys",
"diaggroup_CABG",
"diaggroup_CHF",
"diaggroup_CVA",
"diaggroup_CVOther",
"diaggroup_CardiacArrest",
"diaggroup_ChestPainUnknown",
"diaggroup_Coma",
"diaggroup_DKA",
"diaggroup_GIBleed",
"diaggroup_GIObstruction",
"diaggroup_Neuro",
"diaggroup_Other",
"diaggroup_Overdose",
"diaggroup_PNA",
"diaggroup_RespMedOther",
"diaggroup_Sepsis",
"diaggroup_Trauma",
"diaggroup_ValveDz",
"gender_Male",
"gender_Other",
"m1_True",
"m2_True",
"m3_True",
"m4_True",
"m5_True",
"m6_True",
"m7_True",
"m8_True",
"m9_True",
"m10_True",
"m11_True",
"m12_True",
"m13_True",
"m14_True",
"m15_True",
"m16_True",
"m17_True",
"m18_True",
"m19_True",
"m20_True"
],
"type": "scatter",
"uid": "28a65fda-6624-406f-8a1b-7e1dcb9f0d54",
"x": [
"sodium",
"electivesurgery",
"vent",
"dialysis",
"gcs",
"urine",
"wbc",
"temperature",
"respiratoryrate",
"heartrate",
"meanbp",
"creatinine",
"ph",
"hematocrit",
"albumin",
"pao2",
"pco2",
"bun",
"glucose",
"bilirubin",
"fio2",
"age",
"thrombolytics",
"aids",
"hepaticfailure",
"lymphoma",
"metastaticcancer",
"leukemia",
"immunosuppression",
"cirrhosis",
"readmit",
"offset",
"admitsource_1.0",
"admitsource_2.0",
"admitsource_3.0",
"admitsource_4.0",
"admitsource_5.0",
"admitsource_6.0",
"admitsource_7.0",
"admitsource_8.0",
"diaggroup_ARF",
"diaggroup_Asthma-Emphys",
"diaggroup_CABG",
"diaggroup_CHF",
"diaggroup_CVA",
"diaggroup_CVOther",
"diaggroup_CardiacArrest",
"diaggroup_ChestPainUnknown",
"diaggroup_Coma",
"diaggroup_DKA",
"diaggroup_GIBleed",
"diaggroup_GIObstruction",
"diaggroup_Neuro",
"diaggroup_Other",
"diaggroup_Overdose",
"diaggroup_PNA",
"diaggroup_RespMedOther",
"diaggroup_Sepsis",
"diaggroup_Trauma",
"diaggroup_ValveDz",
"gender_Male",
"gender_Other",
"m1_True",
"m2_True",
"m3_True",
"m4_True",
"m5_True",
"m6_True",
"m7_True",
"m8_True",
"m9_True",
"m10_True",
"m11_True",
"m12_True",
"m13_True",
"m14_True",
"m15_True",
"m16_True",
"m17_True",
"m18_True",
"m19_True",
"m20_True"
],
"y": [
0.02895100008920424,
0.01940889181967343,
0.01713397112196333,
0.0006888048715839917,
0.19943724634884952,
0.02533979514667484,
0.01876847510296464,
0.059907484539022726,
0.03118646710646018,
0.03090449684447332,
0.030793189430916895,
0.02089485838046929,
0.00879895366559916,
0.01259603502926633,
0.014804259064389239,
0.006116415474074245,
0.006781288603417748,
0.04069577405038757,
0.016778793438278258,
0.01897283888878102,
0.01832390108747583,
0.07812599893362324,
0.002962254344109083,
0.000042048554744753824,
0.0002238103351767069,
0.00009523997474768742,
0.0005200448443643561,
0.00016872489921494353,
0.0005661422812375212,
0.0002791824804045882,
0.0007312175206979133,
0.04873564675659822,
0.01634749861630543,
0.0017569377442036523,
0.0001913455363586476,
0.006714635293616546,
0.00008449044682818052,
0.00030841006190384545,
0.0032686970169763445,
0.005871734202759891,
0.0019213571600408086,
0.004536967337591905,
0.006859050935355847,
0.005319202569766147,
0.02782732741683144,
0.00516748393921808,
0.021132005357644496,
0.0011644991203162115,
0.0027817190845017253,
0.006112789646132433,
0.008028640083417802,
0.0012692347381076123,
0.005863116227885496,
0.011362942040987284,
0.009588107560505321,
0.003230215272296569,
0.005562687657783538,
0.014814582870448472,
0.013788101856366882,
0.004404936157351929,
0.005287599611263047,
0.00001575200082121126,
0.00008180812195822928,
0.008547861985514006,
0.002768742233742037,
0.01292689711014233,
0.0004311241532687182,
0.00034245906354993526,
0.0001626202609141136,
0.00019376841710366558,
0.00005846849317033116,
0.0005971032709410448,
0.000006173066489507722,
0.0007804211444204773,
0.0006015691500332959,
0.000013881165602887428,
0.00004166988296844418,
0.00002905911173326329,
0.001215075633558963,
0.0014923308590539296,
0.0000014489417273680594,
0.009392199341675855
]
}
],
"layout": {
"autosize": true,
"hovermode": "closest",
"showlegend": false,
"title": {
"text": "Gradient Boosting Feature Importance"
},
"yaxis": {
"gridwidth": 2,
"ticklen": 5,
"title": {
"text": "Feature Importance"
}
}
}
},
"text/html": [
"<div id=\"fe9f6910-47e3-46ae-9587-8065966406f2\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {\n",
" Plotly.newPlot(\"fe9f6910-47e3-46ae-9587-8065966406f2\", [{\"marker\": {\"color\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"type\": \"scatter\", \"uid\": \"28a65fda-6624-406f-8a1b-7e1dcb9f0d54\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Gradient Boosting Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {window._Plotly.Plots.resize(document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\"));};})</script>"
],
"text/vnd.plotly.v1+html": [
"<div id=\"fe9f6910-47e3-46ae-9587-8065966406f2\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {\n",
" Plotly.newPlot(\"fe9f6910-47e3-46ae-9587-8065966406f2\", [{\"marker\": {\"color\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"type\": \"scatter\", \"uid\": \"28a65fda-6624-406f-8a1b-7e1dcb9f0d54\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Gradient Boosting Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {window._Plotly.Plots.resize(document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\"));};})</script>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"marker": {
"color": [
0.015393182385476729,
0.03512599863758531,
0.05557183760554524,
0.0008387233707524554,
0.15088973403589656,
0.014489913994399542,
0.010066538767026833,
0.03146183979794839,
0.01957886202422717,
0.0177625669276864,
0.01816203726028578,
0.012608496266762054,
0.014002408047461938,
0.007555750460717009,
0.008855556010923568,
0.004776536313616299,
0.007292789905578917,
0.025049085351701934,
0.009337323310831482,
0.010541629795358925,
0.028512120410617032,
0.056180942471630524,
0.005571112618312676,
0.00002234536100233493,
0.00017753718799262143,
0.00005461302334240726,
0.0004319162512488716,
0.00009470096697713907,
0.0007500166911336089,
0.00022494394912366203,
0.0009348008974143619,
0.02482375350564333,
0.01827397075749166,
0.004239707925584192,
0.0001124848112402303,
0.00838825878272498,
0.00005355299925273202,
0.00033809722098171663,
0.008486652458663294,
0.006540146037259081,
0.0010955450876590413,
0.006333295942327574,
0.010462149890389735,
0.004783973761511346,
0.04579578846314814,
0.008392548201732528,
0.04044848859253336,
0.0008049282730632925,
0.0016445986254421995,
0.01979290928470183,
0.011431580630468091,
0.000747815962359408,
0.005834656451855309,
0.016588647592672236,
0.011875500113340796,
0.002123332318970263,
0.005417053428851872,
0.026635486154858314,
0.017464953537206295,
0.005294355259229973,
0.004263096825712837,
0.000010138642235602707,
0.000925279750643909,
0.026594244001964248,
0.002679523334624341,
0.02199750074102181,
0.0018036498391462309,
0.0009136764721092663,
0.0001529156798654191,
0.00018512791423758553,
0.00011560099493080172,
0.0013765138584327654,
0.011612300776960202,
0.0015199857495482995,
0.002299202626716017,
0.009897020723405443,
0.010364162944318613,
0.0011029339007777269,
0.0016256246505594312,
0.0033259410500596875,
0.009438674964552127,
0.011256792388436986
],
"colorscale": "Portland",
"reversescale": false,
"showscale": true
},
"opacity": 0.6,
"type": "bar",
"uid": "3aadb222-91ce-4d34-ae5b-f5b2e1bd2098",
"width": 0.5,
"x": [
"sodium",
"electivesurgery",
"vent",
"dialysis",
"gcs",
"urine",
"wbc",
"temperature",
"respiratoryrate",
"heartrate",
"meanbp",
"creatinine",
"ph",
"hematocrit",
"albumin",
"pao2",
"pco2",
"bun",
"glucose",
"bilirubin",
"fio2",
"age",
"thrombolytics",
"aids",
"hepaticfailure",
"lymphoma",
"metastaticcancer",
"leukemia",
"immunosuppression",
"cirrhosis",
"readmit",
"offset",
"admitsource_1.0",
"admitsource_2.0",
"admitsource_3.0",
"admitsource_4.0",
"admitsource_5.0",
"admitsource_6.0",
"admitsource_7.0",
"admitsource_8.0",
"diaggroup_ARF",
"diaggroup_Asthma-Emphys",
"diaggroup_CABG",
"diaggroup_CHF",
"diaggroup_CVA",
"diaggroup_CVOther",
"diaggroup_CardiacArrest",
"diaggroup_ChestPainUnknown",
"diaggroup_Coma",
"diaggroup_DKA",
"diaggroup_GIBleed",
"diaggroup_GIObstruction",
"diaggroup_Neuro",
"diaggroup_Other",
"diaggroup_Overdose",
"diaggroup_PNA",
"diaggroup_RespMedOther",
"diaggroup_Sepsis",
"diaggroup_Trauma",
"diaggroup_ValveDz",
"gender_Male",
"gender_Other",
"m1_True",
"m2_True",
"m3_True",
"m4_True",
"m5_True",
"m6_True",
"m7_True",
"m8_True",
"m9_True",
"m10_True",
"m11_True",
"m12_True",
"m13_True",
"m14_True",
"m15_True",
"m16_True",
"m17_True",
"m18_True",
"m19_True",
"m20_True"
],
"y": [
0.015393182385476729,
0.03512599863758531,
0.05557183760554524,
0.0008387233707524554,
0.15088973403589656,
0.014489913994399542,
0.010066538767026833,
0.03146183979794839,
0.01957886202422717,
0.0177625669276864,
0.01816203726028578,
0.012608496266762054,
0.014002408047461938,
0.007555750460717009,
0.008855556010923568,
0.004776536313616299,
0.007292789905578917,
0.025049085351701934,
0.009337323310831482,
0.010541629795358925,
0.028512120410617032,
0.056180942471630524,
0.005571112618312676,
0.00002234536100233493,
0.00017753718799262143,
0.00005461302334240726,
0.0004319162512488716,
0.00009470096697713907,
0.0007500166911336089,
0.00022494394912366203,
0.0009348008974143619,
0.02482375350564333,
0.01827397075749166,
0.004239707925584192,
0.0001124848112402303,
0.00838825878272498,
0.00005355299925273202,
0.00033809722098171663,
0.008486652458663294,
0.006540146037259081,
0.0010955450876590413,
0.006333295942327574,
0.010462149890389735,
0.004783973761511346,
0.04579578846314814,
0.008392548201732528,
0.04044848859253336,
0.0008049282730632925,
0.0016445986254421995,
0.01979290928470183,
0.011431580630468091,
0.000747815962359408,
0.005834656451855309,
0.016588647592672236,
0.011875500113340796,
0.002123332318970263,
0.005417053428851872,
0.026635486154858314,
0.017464953537206295,
0.005294355259229973,
0.004263096825712837,
0.000010138642235602707,
0.000925279750643909,
0.026594244001964248,
0.002679523334624341,
0.02199750074102181,
0.0018036498391462309,
0.0009136764721092663,
0.0001529156798654191,
0.00018512791423758553,
0.00011560099493080172,
0.0013765138584327654,
0.011612300776960202,
0.0015199857495482995,
0.002299202626716017,
0.009897020723405443,
0.010364162944318613,
0.0011029339007777269,
0.0016256246505594312,
0.0033259410500596875,
0.009438674964552127,
0.011256792388436986
]
}
],
"layout": {
"autosize": true,
"hovermode": "closest",
"showlegend": false,
"title": {
"text": "Barplots of Mean Feature Importance"
},
"yaxis": {
"gridwidth": 2,
"ticklen": 5,
"title": {
"text": "Feature Importance"
}
}
}
},
"text/html": [
"<div id=\"36dd33b7-f855-4704-8faf-1fe58ba1203c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {\n",
" Plotly.newPlot(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\", [{\"marker\": {\"color\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"colorscale\": \"Portland\", \"reversescale\": false, \"showscale\": true}, \"opacity\": 0.6, \"width\": 0.5, \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"type\": \"bar\", \"uid\": \"3aadb222-91ce-4d34-ae5b-f5b2e1bd2098\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Barplots of Mean Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {window._Plotly.Plots.resize(document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\"));};})</script>"
],
"text/vnd.plotly.v1+html": [
"<div id=\"36dd33b7-f855-4704-8faf-1fe58ba1203c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {\n",
" Plotly.newPlot(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\", [{\"marker\": {\"color\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"colorscale\": \"Portland\", \"reversescale\": false, \"showscale\": true}, \"opacity\": 0.6, \"width\": 0.5, \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"type\": \"bar\", \"uid\": \"3aadb222-91ce-4d34-ae5b-f5b2e1bd2098\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Barplots of Mean Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {window._Plotly.Plots.resize(document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\"));};})</script>"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"colorscale": "Viridis",
"reversescale": true,
"showscale": true,
"type": "heatmap",
"uid": "ca5a2a9a-2059-4187-a451-d643a7f5d4b9",
"x": [
"ExtraTrees",
"GradientBoost"
],
"y": [
"ExtraTrees",
"GradientBoost"
],
"z": [
[
1,
0.45313604730131996
],
[
0.45313604730131996,
1
]
]
}
],
"layout": {}
},
"text/html": [
"<div id=\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {\n",
" Plotly.newPlot(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\", [{\"colorscale\": \"Viridis\", \"reversescale\": true, \"showscale\": true, \"x\": [\"ExtraTrees\", \"GradientBoost\"], \"y\": [\"ExtraTrees\", \"GradientBoost\"], \"z\": [[1.0, 0.45313604730131996], [0.45313604730131996, 1.0]], \"type\": \"heatmap\", \"uid\": \"0e643610-bd18-4b5d-b400-2f772e0de6bc\"}], {}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {window._Plotly.Plots.resize(document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\"));};})</script>"
],
"text/vnd.plotly.v1+html": [
"<div id=\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
"if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {\n",
" Plotly.newPlot(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\", [{\"colorscale\": \"Viridis\", \"reversescale\": true, \"showscale\": true, \"x\": [\"ExtraTrees\", \"GradientBoost\"], \"y\": [\"ExtraTrees\", \"GradientBoost\"], \"z\": [[1.0, 0.45313604730131996], [0.45313604730131996, 1.0]], \"type\": \"heatmap\", \"uid\": \"0e643610-bd18-4b5d-b400-2f772e0de6bc\"}], {}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
"}\n",
"});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {window._Plotly.Plots.resize(document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\"));};})</script>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"For fold 1:\n",
"Accuracy: 0.7351828499369483\n",
"f-score: 0.7351828499369484\n"
]
},
{
"output_type": "error",
"ename": "NameError",
"evalue": "name 'classification_report_imbalanced' is not defined",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-12-5ccabd3c0e33>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 269\u001b[0m \u001b[0mf1\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mf1_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maverage\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'micro'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 270\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34mf'f-score: {f1}'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 271\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mclassification_report_imbalanced\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 272\u001b[0m \u001b[0mK\u001b[0m\u001b[1;33m=\u001b[0m \u001b[0mclassification_report_imbalanced\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 273\u001b[0m \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread_fwf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mio\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mStringIO\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mK\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mNameError\u001b[0m: name 'classification_report_imbalanced' is not defined"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 576x396 with 0 Axes>"
]
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"len(y_test)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"list(map(abs,lr_features))"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"visualizer\n"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"fig.write_image(\"images/fig1.png\")"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"#lr_fit= lr.fit(X_train_oversampled, y_train_oversampled).tolist()\n",
"lr_features = lr_fit.coef_\n",
"len(list(lr_features.flat))"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
" \n",
" \n",
" model = AdaBoostClassifier() \n",
" model.fit(X_train_oversampled, y_train_oversampled) \n",
" y_pred = model.predict(X_test.values)\n",
" visualizer = ROCAUC(model, classes=classes)\n",
" visualizer.fit(X_train_oversampled, y_train_oversampled) # Fit the training data to the visualizer\n",
" visualizer.score(X_test.values, y_test) # Evaluate the model on the test data\n",
" visualizer.poof(\"Ada_Indicator_Replace_{}.pdf\".format(fold), clear_figure=True) \n",
" print(f'For fold {fold}:')\n",
" print(f'Accuracy: {model.score(X_test.values, y_test)}')\n",
" f1=f1_score(y_test, y_pred, average='micro')\n",
" print(f'f-score: {f1}')\n",
" print(classification_report_imbalanced(y_test, y_pred))\n",
" \n",
" #\n",
"\n",
" "
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
" feature_dataframe['mean'] = feature_dataframe.mean(axis= 1) # axis = 1 computes the mean row-wise\n",
" feature_dataframe.head(3)\n",
" \n",
" y = feature_dataframe['mean'].values\n",
" x = feature_dataframe['features'].values\n",
" data = [go.Bar(\n",
" x= x,\n",
" y= y,\n",
" width = 0.5,\n",
" marker=dict(\n",
" color = feature_dataframe['mean'].values,\n",
" colorscale='Portland',\n",
" showscale=True,\n",
" reversescale = False\n",
" ),\n",
" opacity=0.6\n",
" )]\n",
"\n",
" layout= go.Layout(\n",
" autosize= True,\n",
" title= 'Barplots of Mean Feature Importance',\n",
" hovermode= 'closest',\n",
" # xaxis= dict(\n",
" # title= 'Pop',\n",
" # ticklen= 5,\n",
" # zeroline= False,\n",
" # gridwidth= 2,\n",
" # ),\n",
" yaxis=dict(\n",
" title= 'Feature Importance',\n",
" ticklen= 5,\n",
" gridwidth= 2\n",
" ),\n",
" showlegend= False\n",
" )\n",
" fig = go.Figure(data=data, layout=layout)\n",
" py.iplot(fig, filename='bar-direct-labels')\n",
" \n",
" base_predictions_train = pd.DataFrame( {\n",
" 'ExtraTrees': et_oof_train.ravel(),\n",
" 'GradientBoost': gb_oof_train.ravel()\n",
" })\n",
" base_predictions_train.head()\n",
" \n",
" data = [\n",
" go.Heatmap(\n",
" z= base_predictions_train.astype(float).corr().values ,\n",
" x=base_predictions_train.columns.values,\n",
" y= base_predictions_train.columns.values,\n",
" colorscale='Viridis',\n",
" showscale=True,\n",
" reversescale = True\n",
" )\n",
" ]\n",
" py.iplot(data, filename='labelled-heatmap')\n",
" \n",
" #-------------------------------------------------------------------------------------\n",
" x_train = np.concatenate(( et_oof_train, rf_oof_train, ada_oof_train, gb_oof_train, lr_oof_train), axis=1)\n",
" x_test = np.concatenate(( et_oof_test, rf_oof_test, ada_oof_test, gb_oof_test, lr_oof_test), axis=1)\n",
" \n",
" gbm = xgb.XGBClassifier(\n",
" #learning_rate = 0.02,\n",
" n_estimators= 2000,\n",
" max_depth= 4,\n",
" min_child_weight= 2,\n",
" #gamma=1,\n",
" gamma=0.9, \n",
" subsample=0.8,\n",
" colsample_bytree=0.8,\n",
" objective= 'binary:logistic',\n",
" nthread= -1,\n",
" scale_pos_weight=1).fit(x_train, y_train_oversampled)\n",
" predictions = gbm.predict(x_test)\n",
" "
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"len(lr_features)"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"cols = df2.drop('destcopy', 1).columns.values"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"import plotly.graph_objects as go"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"fig.show()"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"import numpy as np \n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.preprocessing import StandardScaler\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"x1 = np.random.randn(100)\n",
"x2 = np.random.randn(100)\n",
"x3 = np.random.randn(100)\n",
"\n",
"#Make difference in feature dependance\n",
"y = (3 + x1 + 2*x2 + 5*x3 + 0.2*np.random.randn()) > 0\n",
"\n",
"X = pd.DataFrame({'x1':x1,'x2':x2,'x3':x3})\n",
"\n",
"#Scale your data\n",
"scaler = StandardScaler()\n",
"scaler.fit(X) \n",
"X_scaled = pd.DataFrame(scaler.transform(X),columns = X.columns)\n",
"\n",
"clf = LogisticRegression(random_state = 0)\n",
"clf.fit(X_scaled, y)\n",
"\n",
"feature_importance = abs(clf.coef_[0])\n",
"feature_importance = 100.0 * (feature_importance / feature_importance.max())\n",
"sorted_idx = np.argsort(feature_importance)\n",
"pos = np.arange(sorted_idx.shape[0]) + .5\n",
"\n",
"featfig = plt.figure()\n",
"featax = featfig.add_subplot(1, 1, 1)\n",
"featax.barh(pos, feature_importance[sorted_idx], align='center')\n",
"featax.set_yticks(pos)\n",
"featax.set_yticklabels(np.array(X.columns)[sorted_idx], fontsize=8)\n",
"featax.set_xlabel('Relative Feature Importance')\n",
"\n",
"plt.tight_layout() \n",
"plt.show()"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"feature_importance"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}