[602e64]: / Ensemble / Ensemble-all.ipynb

Download this file

2232 lines (2232 with data), 115.3 kB

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "source": [
    "# Import libraries\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import getpass\n",
    "import pdvega\n",
    "import plotly.graph_objs as go\n",
    "\n",
    "from plotly.offline import iplot, init_notebook_mode\n",
    "import plotly.io as pio\n",
    "from plotly.graph_objs import *\n",
    "\n",
    "# for configuring connection \n",
    "from configobj import ConfigObj\n",
    "import os\n",
    "\n",
    "%matplotlib inline\n",
    "\n",
    "\n",
    "import os\n",
    "\n",
    "\n",
    "from sklearn import linear_model\n",
    "from sklearn import metrics\n",
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "#configure the notebook for use in offline mode\n",
    "init_notebook_mode(connected=True)"
   ],
   "outputs": [
    {
     "output_type": "display_data",
     "data": {
      "text/html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ]
     },
     "metadata": {}
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "source": [
    "df2= pd.read_csv(\"analysis.csv\")"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "source": [
    "df2.head()"
   ],
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Unnamed: 0</th>\n",
       "      <th>hospitalid</th>\n",
       "      <th>sodium</th>\n",
       "      <th>electivesurgery</th>\n",
       "      <th>vent</th>\n",
       "      <th>dialysis</th>\n",
       "      <th>gcs</th>\n",
       "      <th>urine</th>\n",
       "      <th>wbc</th>\n",
       "      <th>temperature</th>\n",
       "      <th>...</th>\n",
       "      <th>m11_True</th>\n",
       "      <th>m12_True</th>\n",
       "      <th>m13_True</th>\n",
       "      <th>m14_True</th>\n",
       "      <th>m15_True</th>\n",
       "      <th>m16_True</th>\n",
       "      <th>m17_True</th>\n",
       "      <th>m18_True</th>\n",
       "      <th>m19_True</th>\n",
       "      <th>m20_True</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>59.0</td>\n",
       "      <td>139.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>14.7</td>\n",
       "      <td>36.1</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>73.0</td>\n",
       "      <td>134.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>14.1</td>\n",
       "      <td>39.3</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2</td>\n",
       "      <td>73.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>34.8</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>3</td>\n",
       "      <td>63.0</td>\n",
       "      <td>137.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>10.9</td>\n",
       "      <td>36.6</td>\n",
       "      <td>...</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>4</td>\n",
       "      <td>63.0</td>\n",
       "      <td>135.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>-1.0</td>\n",
       "      <td>5.9</td>\n",
       "      <td>35.0</td>\n",
       "      <td>...</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5 rows × 85 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "   Unnamed: 0  hospitalid  sodium  electivesurgery  vent  dialysis   gcs  \\\n",
       "0           0        59.0   139.0             -1.0   0.0       0.0  15.0   \n",
       "1           1        73.0   134.0             -1.0   0.0       0.0  13.0   \n",
       "2           2        73.0    -1.0              1.0   1.0       0.0  15.0   \n",
       "3           3        63.0   137.0             -1.0   0.0       0.0  15.0   \n",
       "4           4        63.0   135.0             -1.0   0.0       0.0  15.0   \n",
       "\n",
       "   urine   wbc  temperature  ...  m11_True  m12_True  m13_True  m14_True  \\\n",
       "0   -1.0  14.7         36.1  ...         1         0         0         1   \n",
       "1   -1.0  14.1         39.3  ...         1         0         0         1   \n",
       "2   -1.0   8.0         34.8  ...         0         0         1         0   \n",
       "3   -1.0  10.9         36.6  ...         1         0         1         1   \n",
       "4   -1.0   5.9         35.0  ...         0         0         1         0   \n",
       "\n",
       "   m15_True  m16_True  m17_True  m18_True  m19_True  m20_True  \n",
       "0         1         0         0         0         1         0  \n",
       "1         1         0         0         0         1         0  \n",
       "2         0         1         0         1         0         0  \n",
       "3         1         0         0         1         1         0  \n",
       "4         0         0         0         1         0         0  \n",
       "\n",
       "[5 rows x 85 columns]"
      ]
     },
     "metadata": {},
     "execution_count": 3
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "source": [
    "del df2['hospitalid']\n",
    "\n",
    "df2 = df2.drop(df2.columns[[0]], axis=1)"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "source": [
    "df2.shape"
   ],
   "outputs": [
    {
     "output_type": "execute_result",
     "data": {
      "text/plain": [
       "(95148, 83)"
      ]
     },
     "metadata": {},
     "execution_count": 5
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "**We moved all the pre-processing including splitting>imputation>Standardization to the CV iterations**"
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "source": [
    "cols_to_norm=['gcs', 'urine', 'wbc', 'sodium',\n",
    "       'temperature', 'respiratoryrate', 'heartrate', 'meanbp', 'creatinine',\n",
    "       'ph', 'hematocrit', 'albumin', 'pao2', 'pco2', 'bun', 'glucose',\n",
    "       'bilirubin', 'fio2', 'age', 'offset']\n",
    "\n",
    "X=df2.drop('destcopy', 1)\n",
    "y=df2['destcopy']\n",
    "df_cols = list(X)     #fancy impute removes column names."
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "source": [
    "# Load in our libraries\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import re\n",
    "import sklearn\n",
    "import xgboost as xgb\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "\n",
    "import plotly.offline as py\n",
    "py.init_notebook_mode(connected=True)\n",
    "import plotly.graph_objs as go\n",
    "import plotly.tools as tls\n",
    "\n",
    "import warnings\n",
    "warnings.filterwarnings('ignore')\n",
    "\n",
    "# Going to use these 5 base models for the stacking\n",
    "from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier, \n",
    "                              GradientBoostingClassifier, ExtraTreesClassifier)\n",
    "from sklearn.svm import SVC\n",
    "from sklearn.model_selection import KFold\n",
    "from sklearn.linear_model import LogisticRegression"
   ],
   "outputs": [
    {
     "output_type": "display_data",
     "data": {
      "text/html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script><script>requirejs.config({paths: { 'plotly': ['https://cdn.plot.ly/plotly-latest.min']},});if(!window._Plotly) {require(['plotly'],function(plotly) {window._Plotly=plotly;});}</script>"
      ]
     },
     "metadata": {}
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "source": [
    "from sklearn.model_selection import StratifiedKFold"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "source": [
    "\n",
    "classes=['Death','Home','Nursing Home','Rehabilitation']\n",
    "\n",
    "kf_m = StratifiedKFold(n_splits=10)\n",
    "\n",
    "\n",
    "\n",
    "# Class to extend the Sklearn classifier\n",
    "class SklearnHelper(object):\n",
    "    def __init__(self, clf, seed=0, params=None):\n",
    "        params['random_state'] = seed\n",
    "        self.clf = clf(**params)\n",
    "\n",
    "    def train(self, x_train, y_train):\n",
    "        self.clf.fit(x_train, y_train)\n",
    "\n",
    "    def predict(self, x):\n",
    "        return self.clf.predict(x)\n",
    "\n",
    "    def fit(self,x,y):\n",
    "        return self.clf.fit(x,y)\n",
    "\n",
    "    def feature_importances(self,x,y):\n",
    "        return(self.clf.fit(x,y).feature_importances_)\n",
    "    \n",
    "\n",
    "\n",
    "\n",
    "#-------------------------------------------------------------\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "#------------------------------------------\n",
    "\n",
    "rf_params = {\n",
    "    'n_jobs': -1,\n",
    "    'n_estimators': 400,\n",
    "     'warm_start': True, \n",
    "     #'max_features': 0.2,\n",
    "    'max_depth': 30,\n",
    "    'min_samples_leaf': 2,\n",
    "    'max_features' : 0.8,\n",
    "    'verbose': 0,\n",
    "     'criterion':'gini'\n",
    "}\n",
    "\n",
    "\n",
    "# Extra Trees Parameters\n",
    "et_params = {\n",
    "    'n_jobs': -1,\n",
    "    'n_estimators':500,\n",
    "    #'max_features': 0.5,\n",
    "    'max_depth': 8,\n",
    "    'min_samples_leaf': 2,\n",
    "    'verbose': 0\n",
    "}\n",
    "\n",
    "# AdaBoost parameters\n",
    "ada_params = {\n",
    "    'n_estimators': 500,\n",
    "    'learning_rate' : 0.75\n",
    "}\n",
    "\n",
    "# Gradient Boosting parameters\n",
    "gb_params = {\n",
    "    'n_estimators': 500,\n",
    "     #'max_features': 0.2,\n",
    "    'max_depth': 5,\n",
    "    'min_samples_leaf': 2,\n",
    "    'verbose': 0\n",
    "}\n",
    "\n",
    "\n",
    "\n",
    "# Support Vector Classifier parameters \n",
    "lr_params = {\n",
    "    'penalty' : 'l1',\n",
    "    'tol' : 6.75e-05,\n",
    "    'C' : 2.5,\n",
    "    'max_iter': 66\n",
    "    }\n",
    "\n"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "markdown",
   "source": [
    "**Random Forest**"
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "source": [
    "from collections import Counter"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "source": [
    "from sklearn.model_selection import KFold\n",
    "from sklearn import preprocessing\n",
    "from imblearn.over_sampling import SMOTENC\n",
    "from sklearn.metrics import f1_score\n",
    "from yellowbrick.classifier import ROCAUC\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from numpy import loadtxt\n",
    "import os\n",
    "os.environ['KMP_DUPLICATE_LIB_OK']='True'\n",
    "from xgboost import XGBClassifier\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.metrics import accuracy_score\n",
    "from sklearn.ensemble import AdaBoostClassifier\n",
    "from sklearn.datasets import make_classification\n",
    "from sklearn.model_selection import StratifiedKFold\n",
    "import io \n",
    "\n",
    "\n",
    "\n",
    "for fold, (train_index, test_index) in enumerate(kf_m.split(X,y), 1):\n",
    "    X_train = X.iloc[train_index]\n",
    "    y_train = y.iloc[train_index]  # Based on your code, you might need a ravel call here, but I would look into how you're generating your y\n",
    "    X_test = X.iloc[test_index]\n",
    "    y_test = y.iloc[test_index]  # See comment on ravel and  y_train\n",
    "    \n",
    "    \n",
    "#------------------------------Standardize Testing Set------------------------------------\n",
    "    \n",
    "    std_scale = preprocessing.StandardScaler().fit(X_train[cols_to_norm])\n",
    "    X_train[cols_to_norm] = std_scale.transform(X_train[cols_to_norm])\n",
    "    X_test[cols_to_norm] = std_scale.transform(X_test[cols_to_norm])\n",
    "#------------------------------------------------------------------------------------------\n",
    "\n",
    " # Hyperparameters are optimized using hyperopt\n",
    "\n",
    "\n",
    "\n",
    "# Class to extend XGboost classifer\n",
    "    sm = SMOTENC(random_state=50, categorical_features=[1,2,3,22,23,24,25,26,27,28,29,30,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61, 62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81])\n",
    "    X_train_oversampled, y_train_oversampled = sm.fit_sample(X_train, y_train)\n",
    "    print(sorted(Counter(y_train_oversampled).items()))\n",
    "    \n",
    "# --------------- Let's Start the fun ------------------------\n",
    "\n",
    "    # Some useful parameters which will come in handy later on\n",
    "    ntrain = X_train_oversampled.shape[0]\n",
    "    print(ntrain)\n",
    "    ntest = X_test.shape[0]\n",
    "    SEED = 0 # for reproducibility\n",
    "    # set folds for out-of-fold prediction\n",
    "    #kf = KFold(ntrain, n_split=5, random_state=SEED)\n",
    "    \n",
    "    def get_oof(clf, x_train, y_train, x_test):\n",
    "        oof_train = np.zeros((ntrain,))\n",
    "        oof_test = np.zeros((ntest,))\n",
    "        oof_test_skf = np.empty((10, ntest))\n",
    "\n",
    "\n",
    "        for i, (train_index, test_index) in enumerate(kf_m.split(x_train, y_train)):\n",
    "            x_tr = x_train[train_index]\n",
    "            y_tr = y_train[train_index]\n",
    "            x_te = x_train[test_index]\n",
    "\n",
    "            clf.train(x_tr, y_tr)\n",
    "            \n",
    "            oof_train[test_index] = clf.predict(x_te)\n",
    "            oof_test_skf[i, :] = clf.predict(x_test)\n",
    "\n",
    "        oof_test[:] = oof_test_skf.mean(axis=0)\n",
    "        return oof_train.reshape(-1, 1), oof_test.reshape(-1, 1)\n",
    "    \n",
    "        # Create 5 objects that represent our 4 models\n",
    "    #rf = SklearnHelper(clf=RandomForestClassifier, seed=SEED, params=rf_params)\n",
    "    et = SklearnHelper(clf=ExtraTreesClassifier, seed=SEED, params=et_params)\n",
    "    #ada = SklearnHelper(clf=AdaBoostClassifier, seed=SEED, params=ada_params)\n",
    "    gb = SklearnHelper(clf=GradientBoostingClassifier, seed=SEED, params=gb_params)\n",
    "    #lr = SklearnHelper(clf=LogisticRegression, seed=SEED, params=lr_params)\n",
    "\n",
    "    #------------------------------------------\n",
    "    # Create our OOF train and test predictions. These base results will be used as new features\n",
    "    et_oof_train, et_oof_test = get_oof(et, X_train_oversampled, y_train_oversampled, X_test) # Extra Trees\n",
    "    #rf_oof_train, rf_oof_test = get_oof(rf,X_train_oversampled, y_train_oversampled, X_test) # Random Forest\n",
    "    #ada_oof_train, ada_oof_test = get_oof(ada, X_train_oversampled, y_train_oversampled, X_test) # AdaBoost \n",
    "    gb_oof_train, gb_oof_test = get_oof(gb,X_train_oversampled, y_train_oversampled, X_test) # Gradient Boost\n",
    "    #lr_oof_train, lr_oof_test = get_oof(lr,X_train_oversampled, y_train_oversampled, X_test) # Support Vector Classifier\n",
    "\n",
    "    print(\"Training is complete\")\n",
    "\n",
    "\n",
    "\n",
    "    #rf_features = rf.feature_importances(X_train_oversampled,y_train_oversampled).tolist()\n",
    "    et_features = et.feature_importances(X_train_oversampled, y_train_oversampled).tolist()\n",
    "    #ada_features = ada.feature_importances(X_train_oversampled, y_train_oversampled).tolist()\n",
    "    gb_features = gb.feature_importances(X_train_oversampled, y_train_oversampled).tolist()\n",
    "    #lr_features=(map(abs,lr_features)) / (abs(lr_fit.coef_).max())\n",
    "\n",
    "\n",
    "\n",
    "    cols = df2.drop('destcopy', 1).columns.values\n",
    "        # Create a dataframe with features\n",
    "    feature_dataframe = pd.DataFrame( {'features': cols,\n",
    "         \n",
    "         'Extra Trees  feature importances': et_features,\n",
    "         \n",
    "         'Gradient Boost feature importances': gb_features,\n",
    "         #'LR feature importances': lr_features\n",
    "        })\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "    # Create a dataframe with features\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "    # Scatter plot \n",
    "    trace = go.Scatter(\n",
    "        y = feature_dataframe['Extra Trees  feature importances'].values,\n",
    "        x = feature_dataframe['features'].values,\n",
    "        mode='markers',\n",
    "        marker=dict(\n",
    "            sizemode = 'diameter',\n",
    "            sizeref = 1,\n",
    "            size = 25,\n",
    "    #       size= feature_dataframe['AdaBoost feature importances'].values,\n",
    "            #color = np.random.randn(500), #set color equal to a variable\n",
    "            color = feature_dataframe['Extra Trees  feature importances'].values,\n",
    "            colorscale='Portland',\n",
    "            showscale=True\n",
    "        ),\n",
    "        text = feature_dataframe['features'].values\n",
    "    )\n",
    "    data = [trace]\n",
    "\n",
    "    layout= go.Layout(\n",
    "        autosize= True,\n",
    "        title= 'Extra Trees Feature Importance',\n",
    "        hovermode= 'closest',\n",
    "    #     xaxis= dict(\n",
    "    #         title= 'Pop',\n",
    "    #         ticklen= 5,\n",
    "    #         zeroline= False,\n",
    "    #         gridwidth= 2,\n",
    "    #     ),\n",
    "        yaxis=dict(\n",
    "            title= 'Feature Importance',\n",
    "            ticklen= 5,\n",
    "            gridwidth= 2\n",
    "        ),\n",
    "        showlegend= False\n",
    "    )\n",
    "    fig = go.Figure(data=data, layout=layout)\n",
    "    py.iplot(fig,filename='scatter2010')\n",
    "\n",
    "\n",
    "\n",
    "    # Scatter plot \n",
    "    trace = go.Scatter(\n",
    "        y = feature_dataframe['Gradient Boost feature importances'].values,\n",
    "        x = feature_dataframe['features'].values,\n",
    "        mode='markers',\n",
    "        marker=dict(\n",
    "            sizemode = 'diameter',\n",
    "            sizeref = 1,\n",
    "            size = 25,\n",
    "    #       size= feature_dataframe['AdaBoost feature importances'].values,\n",
    "            #color = np.random.randn(500), #set color equal to a variable\n",
    "            color = feature_dataframe['Gradient Boost feature importances'].values,\n",
    "            colorscale='Portland',\n",
    "            showscale=True\n",
    "        ),\n",
    "        text = feature_dataframe['features'].values\n",
    "    )\n",
    "    data = [trace]\n",
    "\n",
    "    layout= go.Layout(\n",
    "        autosize= True,\n",
    "        title= 'Gradient Boosting Feature Importance',\n",
    "        hovermode= 'closest',\n",
    "    #     xaxis= dict(\n",
    "    #         title= 'Pop',\n",
    "    #         ticklen= 5,\n",
    "    #         zeroline= False,\n",
    "    #         gridwidth= 2,\n",
    "    #     ),\n",
    "        yaxis=dict(\n",
    "            title= 'Feature Importance',\n",
    "            ticklen= 5,\n",
    "            gridwidth= 2\n",
    "        ),\n",
    "        showlegend= False\n",
    "    )\n",
    "    fig = go.Figure(data=data, layout=layout)\n",
    "    py.iplot(fig,filename='scatter2010')\n",
    "\n",
    "    feature_dataframe['mean'] = feature_dataframe.mean(axis= 1) # axis = 1 computes the mean row-wise\n",
    "    feature_dataframe.head(3)\n",
    "\n",
    "    yv = feature_dataframe['mean'].values\n",
    "    x = feature_dataframe['features'].values\n",
    "    data = [go.Bar(\n",
    "                x= x,\n",
    "                y= yv,\n",
    "                width = 0.5,\n",
    "                marker=dict(\n",
    "                   color = feature_dataframe['mean'].values,\n",
    "                colorscale='Portland',\n",
    "                showscale=True,\n",
    "                reversescale = False\n",
    "                ),\n",
    "                opacity=0.6\n",
    "            )]\n",
    "\n",
    "    layout= go.Layout(\n",
    "        autosize= True,\n",
    "        title= 'Barplots of Mean Feature Importance',\n",
    "        hovermode= 'closest',\n",
    "    #     xaxis= dict(\n",
    "    #         title= 'Pop',\n",
    "    #         ticklen= 5,\n",
    "    #         zeroline= False,\n",
    "    #         gridwidth= 2,\n",
    "    #     ),\n",
    "        yaxis=dict(\n",
    "            title= 'Feature Importance',\n",
    "            ticklen= 5,\n",
    "            gridwidth= 2\n",
    "        ),\n",
    "        showlegend= False\n",
    "    )\n",
    "    fig = go.Figure(data=data, layout=layout)\n",
    "    py.iplot(fig, filename='bar-direct-labels')\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "    base_predictions_train = pd.DataFrame( {\n",
    "     'ExtraTrees': et_oof_train.ravel(),\n",
    "     \n",
    "     'GradientBoost': gb_oof_train.ravel(),\n",
    "     #'LR': lr_oof_train.ravel()\n",
    "    })\n",
    "    base_predictions_train.head()\n",
    "\n",
    "    data = [\n",
    "    go.Heatmap(\n",
    "        z= base_predictions_train.astype(float).corr().values ,\n",
    "        x=base_predictions_train.columns.values,\n",
    "        y= base_predictions_train.columns.values,\n",
    "          colorscale='Viridis',\n",
    "            showscale=True,\n",
    "            reversescale = True\n",
    "        )\n",
    "    ]\n",
    "    py.iplot(data, filename='labelled-heatmap')\n",
    "\n",
    "    x_train = np.concatenate(( et_oof_train,gb_oof_train), axis=1)\n",
    "    x_test = np.concatenate(( et_oof_test, gb_oof_test), axis=1)\n",
    "    \n",
    "    gbm = RandomForestClassifier().fit(x_train,y_train_oversampled)\n",
    "    y_pred = gbm.predict(x_test)\n",
    "    visualizer = ROCAUC(gbm, classes=classes)\n",
    "    visualizer.fit(x_train, y_train_oversampled)  # Fit the training data to the visualizer\n",
    "    visualizer.score(x_test, y_test)  # Evaluate the model on the test data\n",
    "    visualizer.poof(\"Ensembel_{}.pdf\".format(fold), clear_figure=True) \n",
    "    print(f'For fold {fold}:')\n",
    "    print(f'Accuracy: {gbm.score(x_test, y_test)}')\n",
    "    f1=f1_score(y_test, y_pred, average='micro')\n",
    "    print(f'f-score: {f1}')\n",
    "    print(classification_report_imbalanced(y_test, y_pred))\n",
    "    K= classification_report_imbalanced(y_test, y_pred)\n",
    "    df = pd.read_fwf(io.StringIO(K))\n",
    "    df.loc[\"1\":\"1\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-D.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "    df.loc[\"2\":\"2\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-H.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "    df.loc[\"3\":\"3\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-N.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "    df.loc[\"4\":\"4\",\"pre\":\"sup\"].to_csv(\"RF-Ensemble-R.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "    df.iloc[6:7,:].to_csv(\"RF-Ensemble-avg.csv\" , sep=',', encoding='utf-8', doublequote=False, index=False, mode=\"a\", header=False)\n",
    "    \n",
    "    "
   ],
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "[(1, 59596), (2, 59596), (3, 59596), (4, 59596)]\n",
      "238384\n",
      "Training is complete\n"
     ]
    },
    {
     "output_type": "display_data",
     "data": {
      "application/vnd.plotly.v1+json": {
       "config": {
        "linkText": "Export to plot.ly",
        "plotlyServerURL": "https://plot.ly",
        "showLink": false
       },
       "data": [
        {
         "marker": {
          "color": [
           0.0018353646817492182,
           0.05084310545549719,
           0.09400970408912715,
           0.0009886418699209191,
           0.10234222172294358,
           0.003640032842124243,
           0.0013646024310890242,
           0.003016195056874061,
           0.007971256941994166,
           0.004620637010899481,
           0.005530885089654668,
           0.004322134153054816,
           0.019205862429324715,
           0.002515465892167688,
           0.0029068529574578974,
           0.0034366571531583533,
           0.007804291207740086,
           0.009402396653016296,
           0.0018958531833847049,
           0.002110420701936828,
           0.038700339733758235,
           0.03423588600963781,
           0.00817997089251627,
           0.000002642167259916031,
           0.00013126404080853596,
           0.000013986071937127094,
           0.00034378765813338706,
           0.000020677034739334597,
           0.0009338911010296967,
           0.0001707054178427359,
           0.0011383842741308104,
           0.0009118602546884352,
           0.02020044289867789,
           0.006722478106964732,
           0.00003362408612181299,
           0.010061882271833413,
           0.000022615551677283513,
           0.0003677843800595879,
           0.013704607900350243,
           0.007208557871758271,
           0.00026973301527727416,
           0.008129624547063242,
           0.014065248845423622,
           0.004248744953256545,
           0.06376424950946484,
           0.011617612464246977,
           0.05976497182742223,
           0.0004453574258103735,
           0.0005074781663826736,
           0.033473028923271225,
           0.014834521177518382,
           0.00022639718661120363,
           0.005806196675825123,
           0.021814353144357184,
           0.014162892666176269,
           0.0010164493656439567,
           0.005271419199920207,
           0.03845638943926816,
           0.021141805218045706,
           0.006183774361108017,
           0.0032385940401626267,
           0.000004525283649994152,
           0.0017687513793295886,
           0.04464062601841449,
           0.002590304435506645,
           0.031068104371901287,
           0.0031761755250237435,
           0.0014848938806685972,
           0.00014321109881672463,
           0.00017648741137150546,
           0.0001727334966912723,
           0.002155924445924486,
           0.023218428487430897,
           0.0022595503546761217,
           0.003996836103398738,
           0.019780160281208,
           0.020686656005668783,
           0.0021768086898221904,
           0.0020361736675598993,
           0.0051595512410654455,
           0.018875900987376886,
           0.013121385435198118
          ],
          "colorscale": "Portland",
          "showscale": true,
          "size": 25,
          "sizemode": "diameter",
          "sizeref": 1
         },
         "mode": "markers",
         "text": [
          "sodium",
          "electivesurgery",
          "vent",
          "dialysis",
          "gcs",
          "urine",
          "wbc",
          "temperature",
          "respiratoryrate",
          "heartrate",
          "meanbp",
          "creatinine",
          "ph",
          "hematocrit",
          "albumin",
          "pao2",
          "pco2",
          "bun",
          "glucose",
          "bilirubin",
          "fio2",
          "age",
          "thrombolytics",
          "aids",
          "hepaticfailure",
          "lymphoma",
          "metastaticcancer",
          "leukemia",
          "immunosuppression",
          "cirrhosis",
          "readmit",
          "offset",
          "admitsource_1.0",
          "admitsource_2.0",
          "admitsource_3.0",
          "admitsource_4.0",
          "admitsource_5.0",
          "admitsource_6.0",
          "admitsource_7.0",
          "admitsource_8.0",
          "diaggroup_ARF",
          "diaggroup_Asthma-Emphys",
          "diaggroup_CABG",
          "diaggroup_CHF",
          "diaggroup_CVA",
          "diaggroup_CVOther",
          "diaggroup_CardiacArrest",
          "diaggroup_ChestPainUnknown",
          "diaggroup_Coma",
          "diaggroup_DKA",
          "diaggroup_GIBleed",
          "diaggroup_GIObstruction",
          "diaggroup_Neuro",
          "diaggroup_Other",
          "diaggroup_Overdose",
          "diaggroup_PNA",
          "diaggroup_RespMedOther",
          "diaggroup_Sepsis",
          "diaggroup_Trauma",
          "diaggroup_ValveDz",
          "gender_Male",
          "gender_Other",
          "m1_True",
          "m2_True",
          "m3_True",
          "m4_True",
          "m5_True",
          "m6_True",
          "m7_True",
          "m8_True",
          "m9_True",
          "m10_True",
          "m11_True",
          "m12_True",
          "m13_True",
          "m14_True",
          "m15_True",
          "m16_True",
          "m17_True",
          "m18_True",
          "m19_True",
          "m20_True"
         ],
         "type": "scatter",
         "uid": "ed896635-15d8-49be-ab7b-626cd70d9f44",
         "x": [
          "sodium",
          "electivesurgery",
          "vent",
          "dialysis",
          "gcs",
          "urine",
          "wbc",
          "temperature",
          "respiratoryrate",
          "heartrate",
          "meanbp",
          "creatinine",
          "ph",
          "hematocrit",
          "albumin",
          "pao2",
          "pco2",
          "bun",
          "glucose",
          "bilirubin",
          "fio2",
          "age",
          "thrombolytics",
          "aids",
          "hepaticfailure",
          "lymphoma",
          "metastaticcancer",
          "leukemia",
          "immunosuppression",
          "cirrhosis",
          "readmit",
          "offset",
          "admitsource_1.0",
          "admitsource_2.0",
          "admitsource_3.0",
          "admitsource_4.0",
          "admitsource_5.0",
          "admitsource_6.0",
          "admitsource_7.0",
          "admitsource_8.0",
          "diaggroup_ARF",
          "diaggroup_Asthma-Emphys",
          "diaggroup_CABG",
          "diaggroup_CHF",
          "diaggroup_CVA",
          "diaggroup_CVOther",
          "diaggroup_CardiacArrest",
          "diaggroup_ChestPainUnknown",
          "diaggroup_Coma",
          "diaggroup_DKA",
          "diaggroup_GIBleed",
          "diaggroup_GIObstruction",
          "diaggroup_Neuro",
          "diaggroup_Other",
          "diaggroup_Overdose",
          "diaggroup_PNA",
          "diaggroup_RespMedOther",
          "diaggroup_Sepsis",
          "diaggroup_Trauma",
          "diaggroup_ValveDz",
          "gender_Male",
          "gender_Other",
          "m1_True",
          "m2_True",
          "m3_True",
          "m4_True",
          "m5_True",
          "m6_True",
          "m7_True",
          "m8_True",
          "m9_True",
          "m10_True",
          "m11_True",
          "m12_True",
          "m13_True",
          "m14_True",
          "m15_True",
          "m16_True",
          "m17_True",
          "m18_True",
          "m19_True",
          "m20_True"
         ],
         "y": [
          0.0018353646817492182,
          0.05084310545549719,
          0.09400970408912715,
          0.0009886418699209191,
          0.10234222172294358,
          0.003640032842124243,
          0.0013646024310890242,
          0.003016195056874061,
          0.007971256941994166,
          0.004620637010899481,
          0.005530885089654668,
          0.004322134153054816,
          0.019205862429324715,
          0.002515465892167688,
          0.0029068529574578974,
          0.0034366571531583533,
          0.007804291207740086,
          0.009402396653016296,
          0.0018958531833847049,
          0.002110420701936828,
          0.038700339733758235,
          0.03423588600963781,
          0.00817997089251627,
          0.000002642167259916031,
          0.00013126404080853596,
          0.000013986071937127094,
          0.00034378765813338706,
          0.000020677034739334597,
          0.0009338911010296967,
          0.0001707054178427359,
          0.0011383842741308104,
          0.0009118602546884352,
          0.02020044289867789,
          0.006722478106964732,
          0.00003362408612181299,
          0.010061882271833413,
          0.000022615551677283513,
          0.0003677843800595879,
          0.013704607900350243,
          0.007208557871758271,
          0.00026973301527727416,
          0.008129624547063242,
          0.014065248845423622,
          0.004248744953256545,
          0.06376424950946484,
          0.011617612464246977,
          0.05976497182742223,
          0.0004453574258103735,
          0.0005074781663826736,
          0.033473028923271225,
          0.014834521177518382,
          0.00022639718661120363,
          0.005806196675825123,
          0.021814353144357184,
          0.014162892666176269,
          0.0010164493656439567,
          0.005271419199920207,
          0.03845638943926816,
          0.021141805218045706,
          0.006183774361108017,
          0.0032385940401626267,
          0.000004525283649994152,
          0.0017687513793295886,
          0.04464062601841449,
          0.002590304435506645,
          0.031068104371901287,
          0.0031761755250237435,
          0.0014848938806685972,
          0.00014321109881672463,
          0.00017648741137150546,
          0.0001727334966912723,
          0.002155924445924486,
          0.023218428487430897,
          0.0022595503546761217,
          0.003996836103398738,
          0.019780160281208,
          0.020686656005668783,
          0.0021768086898221904,
          0.0020361736675598993,
          0.0051595512410654455,
          0.018875900987376886,
          0.013121385435198118
         ]
        }
       ],
       "layout": {
        "autosize": true,
        "hovermode": "closest",
        "showlegend": false,
        "title": {
         "text": "Extra Trees Feature Importance"
        },
        "yaxis": {
         "gridwidth": 2,
         "ticklen": 5,
         "title": {
          "text": "Feature Importance"
         }
        }
       }
      },
      "text/html": [
       "<div id=\"724f57ba-d509-454b-999a-e0d2f64c494b\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {\n",
       "    Plotly.newPlot(\"724f57ba-d509-454b-999a-e0d2f64c494b\", [{\"marker\": {\"color\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"type\": \"scatter\", \"uid\": \"ed896635-15d8-49be-ab7b-626cd70d9f44\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Extra Trees Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {window._Plotly.Plots.resize(document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\"));};})</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<div id=\"724f57ba-d509-454b-999a-e0d2f64c494b\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {\n",
       "    Plotly.newPlot(\"724f57ba-d509-454b-999a-e0d2f64c494b\", [{\"marker\": {\"color\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.0018353646817492182, 0.05084310545549719, 0.09400970408912715, 0.0009886418699209191, 0.10234222172294358, 0.003640032842124243, 0.0013646024310890242, 0.003016195056874061, 0.007971256941994166, 0.004620637010899481, 0.005530885089654668, 0.004322134153054816, 0.019205862429324715, 0.002515465892167688, 0.0029068529574578974, 0.0034366571531583533, 0.007804291207740086, 0.009402396653016296, 0.0018958531833847049, 0.002110420701936828, 0.038700339733758235, 0.03423588600963781, 0.00817997089251627, 2.642167259916031e-06, 0.00013126404080853596, 1.3986071937127094e-05, 0.00034378765813338706, 2.0677034739334597e-05, 0.0009338911010296967, 0.0001707054178427359, 0.0011383842741308104, 0.0009118602546884352, 0.02020044289867789, 0.006722478106964732, 3.362408612181299e-05, 0.010061882271833413, 2.2615551677283513e-05, 0.0003677843800595879, 0.013704607900350243, 0.007208557871758271, 0.00026973301527727416, 0.008129624547063242, 0.014065248845423622, 0.004248744953256545, 0.06376424950946484, 0.011617612464246977, 0.05976497182742223, 0.0004453574258103735, 0.0005074781663826736, 0.033473028923271225, 0.014834521177518382, 0.00022639718661120363, 0.005806196675825123, 0.021814353144357184, 0.014162892666176269, 0.0010164493656439567, 0.005271419199920207, 0.03845638943926816, 0.021141805218045706, 0.006183774361108017, 0.0032385940401626267, 4.525283649994152e-06, 0.0017687513793295886, 0.04464062601841449, 0.002590304435506645, 0.031068104371901287, 0.0031761755250237435, 0.0014848938806685972, 0.00014321109881672463, 0.00017648741137150546, 0.0001727334966912723, 0.002155924445924486, 0.023218428487430897, 0.0022595503546761217, 0.003996836103398738, 0.019780160281208, 0.020686656005668783, 0.0021768086898221904, 0.0020361736675598993, 0.0051595512410654455, 0.018875900987376886, 0.013121385435198118], \"type\": \"scatter\", \"uid\": \"ed896635-15d8-49be-ab7b-626cd70d9f44\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Extra Trees Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\")) {window._Plotly.Plots.resize(document.getElementById(\"724f57ba-d509-454b-999a-e0d2f64c494b\"));};})</script>"
      ]
     },
     "metadata": {}
    },
    {
     "output_type": "display_data",
     "data": {
      "application/vnd.plotly.v1+json": {
       "config": {
        "linkText": "Export to plot.ly",
        "plotlyServerURL": "https://plot.ly",
        "showLink": false
       },
       "data": [
        {
         "marker": {
          "color": [
           0.02895100008920424,
           0.01940889181967343,
           0.01713397112196333,
           0.0006888048715839917,
           0.19943724634884952,
           0.02533979514667484,
           0.01876847510296464,
           0.059907484539022726,
           0.03118646710646018,
           0.03090449684447332,
           0.030793189430916895,
           0.02089485838046929,
           0.00879895366559916,
           0.01259603502926633,
           0.014804259064389239,
           0.006116415474074245,
           0.006781288603417748,
           0.04069577405038757,
           0.016778793438278258,
           0.01897283888878102,
           0.01832390108747583,
           0.07812599893362324,
           0.002962254344109083,
           0.000042048554744753824,
           0.0002238103351767069,
           0.00009523997474768742,
           0.0005200448443643561,
           0.00016872489921494353,
           0.0005661422812375212,
           0.0002791824804045882,
           0.0007312175206979133,
           0.04873564675659822,
           0.01634749861630543,
           0.0017569377442036523,
           0.0001913455363586476,
           0.006714635293616546,
           0.00008449044682818052,
           0.00030841006190384545,
           0.0032686970169763445,
           0.005871734202759891,
           0.0019213571600408086,
           0.004536967337591905,
           0.006859050935355847,
           0.005319202569766147,
           0.02782732741683144,
           0.00516748393921808,
           0.021132005357644496,
           0.0011644991203162115,
           0.0027817190845017253,
           0.006112789646132433,
           0.008028640083417802,
           0.0012692347381076123,
           0.005863116227885496,
           0.011362942040987284,
           0.009588107560505321,
           0.003230215272296569,
           0.005562687657783538,
           0.014814582870448472,
           0.013788101856366882,
           0.004404936157351929,
           0.005287599611263047,
           0.00001575200082121126,
           0.00008180812195822928,
           0.008547861985514006,
           0.002768742233742037,
           0.01292689711014233,
           0.0004311241532687182,
           0.00034245906354993526,
           0.0001626202609141136,
           0.00019376841710366558,
           0.00005846849317033116,
           0.0005971032709410448,
           0.000006173066489507722,
           0.0007804211444204773,
           0.0006015691500332959,
           0.000013881165602887428,
           0.00004166988296844418,
           0.00002905911173326329,
           0.001215075633558963,
           0.0014923308590539296,
           0.0000014489417273680594,
           0.009392199341675855
          ],
          "colorscale": "Portland",
          "showscale": true,
          "size": 25,
          "sizemode": "diameter",
          "sizeref": 1
         },
         "mode": "markers",
         "text": [
          "sodium",
          "electivesurgery",
          "vent",
          "dialysis",
          "gcs",
          "urine",
          "wbc",
          "temperature",
          "respiratoryrate",
          "heartrate",
          "meanbp",
          "creatinine",
          "ph",
          "hematocrit",
          "albumin",
          "pao2",
          "pco2",
          "bun",
          "glucose",
          "bilirubin",
          "fio2",
          "age",
          "thrombolytics",
          "aids",
          "hepaticfailure",
          "lymphoma",
          "metastaticcancer",
          "leukemia",
          "immunosuppression",
          "cirrhosis",
          "readmit",
          "offset",
          "admitsource_1.0",
          "admitsource_2.0",
          "admitsource_3.0",
          "admitsource_4.0",
          "admitsource_5.0",
          "admitsource_6.0",
          "admitsource_7.0",
          "admitsource_8.0",
          "diaggroup_ARF",
          "diaggroup_Asthma-Emphys",
          "diaggroup_CABG",
          "diaggroup_CHF",
          "diaggroup_CVA",
          "diaggroup_CVOther",
          "diaggroup_CardiacArrest",
          "diaggroup_ChestPainUnknown",
          "diaggroup_Coma",
          "diaggroup_DKA",
          "diaggroup_GIBleed",
          "diaggroup_GIObstruction",
          "diaggroup_Neuro",
          "diaggroup_Other",
          "diaggroup_Overdose",
          "diaggroup_PNA",
          "diaggroup_RespMedOther",
          "diaggroup_Sepsis",
          "diaggroup_Trauma",
          "diaggroup_ValveDz",
          "gender_Male",
          "gender_Other",
          "m1_True",
          "m2_True",
          "m3_True",
          "m4_True",
          "m5_True",
          "m6_True",
          "m7_True",
          "m8_True",
          "m9_True",
          "m10_True",
          "m11_True",
          "m12_True",
          "m13_True",
          "m14_True",
          "m15_True",
          "m16_True",
          "m17_True",
          "m18_True",
          "m19_True",
          "m20_True"
         ],
         "type": "scatter",
         "uid": "28a65fda-6624-406f-8a1b-7e1dcb9f0d54",
         "x": [
          "sodium",
          "electivesurgery",
          "vent",
          "dialysis",
          "gcs",
          "urine",
          "wbc",
          "temperature",
          "respiratoryrate",
          "heartrate",
          "meanbp",
          "creatinine",
          "ph",
          "hematocrit",
          "albumin",
          "pao2",
          "pco2",
          "bun",
          "glucose",
          "bilirubin",
          "fio2",
          "age",
          "thrombolytics",
          "aids",
          "hepaticfailure",
          "lymphoma",
          "metastaticcancer",
          "leukemia",
          "immunosuppression",
          "cirrhosis",
          "readmit",
          "offset",
          "admitsource_1.0",
          "admitsource_2.0",
          "admitsource_3.0",
          "admitsource_4.0",
          "admitsource_5.0",
          "admitsource_6.0",
          "admitsource_7.0",
          "admitsource_8.0",
          "diaggroup_ARF",
          "diaggroup_Asthma-Emphys",
          "diaggroup_CABG",
          "diaggroup_CHF",
          "diaggroup_CVA",
          "diaggroup_CVOther",
          "diaggroup_CardiacArrest",
          "diaggroup_ChestPainUnknown",
          "diaggroup_Coma",
          "diaggroup_DKA",
          "diaggroup_GIBleed",
          "diaggroup_GIObstruction",
          "diaggroup_Neuro",
          "diaggroup_Other",
          "diaggroup_Overdose",
          "diaggroup_PNA",
          "diaggroup_RespMedOther",
          "diaggroup_Sepsis",
          "diaggroup_Trauma",
          "diaggroup_ValveDz",
          "gender_Male",
          "gender_Other",
          "m1_True",
          "m2_True",
          "m3_True",
          "m4_True",
          "m5_True",
          "m6_True",
          "m7_True",
          "m8_True",
          "m9_True",
          "m10_True",
          "m11_True",
          "m12_True",
          "m13_True",
          "m14_True",
          "m15_True",
          "m16_True",
          "m17_True",
          "m18_True",
          "m19_True",
          "m20_True"
         ],
         "y": [
          0.02895100008920424,
          0.01940889181967343,
          0.01713397112196333,
          0.0006888048715839917,
          0.19943724634884952,
          0.02533979514667484,
          0.01876847510296464,
          0.059907484539022726,
          0.03118646710646018,
          0.03090449684447332,
          0.030793189430916895,
          0.02089485838046929,
          0.00879895366559916,
          0.01259603502926633,
          0.014804259064389239,
          0.006116415474074245,
          0.006781288603417748,
          0.04069577405038757,
          0.016778793438278258,
          0.01897283888878102,
          0.01832390108747583,
          0.07812599893362324,
          0.002962254344109083,
          0.000042048554744753824,
          0.0002238103351767069,
          0.00009523997474768742,
          0.0005200448443643561,
          0.00016872489921494353,
          0.0005661422812375212,
          0.0002791824804045882,
          0.0007312175206979133,
          0.04873564675659822,
          0.01634749861630543,
          0.0017569377442036523,
          0.0001913455363586476,
          0.006714635293616546,
          0.00008449044682818052,
          0.00030841006190384545,
          0.0032686970169763445,
          0.005871734202759891,
          0.0019213571600408086,
          0.004536967337591905,
          0.006859050935355847,
          0.005319202569766147,
          0.02782732741683144,
          0.00516748393921808,
          0.021132005357644496,
          0.0011644991203162115,
          0.0027817190845017253,
          0.006112789646132433,
          0.008028640083417802,
          0.0012692347381076123,
          0.005863116227885496,
          0.011362942040987284,
          0.009588107560505321,
          0.003230215272296569,
          0.005562687657783538,
          0.014814582870448472,
          0.013788101856366882,
          0.004404936157351929,
          0.005287599611263047,
          0.00001575200082121126,
          0.00008180812195822928,
          0.008547861985514006,
          0.002768742233742037,
          0.01292689711014233,
          0.0004311241532687182,
          0.00034245906354993526,
          0.0001626202609141136,
          0.00019376841710366558,
          0.00005846849317033116,
          0.0005971032709410448,
          0.000006173066489507722,
          0.0007804211444204773,
          0.0006015691500332959,
          0.000013881165602887428,
          0.00004166988296844418,
          0.00002905911173326329,
          0.001215075633558963,
          0.0014923308590539296,
          0.0000014489417273680594,
          0.009392199341675855
         ]
        }
       ],
       "layout": {
        "autosize": true,
        "hovermode": "closest",
        "showlegend": false,
        "title": {
         "text": "Gradient Boosting Feature Importance"
        },
        "yaxis": {
         "gridwidth": 2,
         "ticklen": 5,
         "title": {
          "text": "Feature Importance"
         }
        }
       }
      },
      "text/html": [
       "<div id=\"fe9f6910-47e3-46ae-9587-8065966406f2\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {\n",
       "    Plotly.newPlot(\"fe9f6910-47e3-46ae-9587-8065966406f2\", [{\"marker\": {\"color\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"type\": \"scatter\", \"uid\": \"28a65fda-6624-406f-8a1b-7e1dcb9f0d54\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Gradient Boosting Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {window._Plotly.Plots.resize(document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\"));};})</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<div id=\"fe9f6910-47e3-46ae-9587-8065966406f2\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {\n",
       "    Plotly.newPlot(\"fe9f6910-47e3-46ae-9587-8065966406f2\", [{\"marker\": {\"color\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"colorscale\": \"Portland\", \"showscale\": true, \"size\": 25, \"sizemode\": \"diameter\", \"sizeref\": 1}, \"mode\": \"markers\", \"text\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.02895100008920424, 0.01940889181967343, 0.01713397112196333, 0.0006888048715839917, 0.19943724634884952, 0.02533979514667484, 0.01876847510296464, 0.059907484539022726, 0.03118646710646018, 0.03090449684447332, 0.030793189430916895, 0.02089485838046929, 0.00879895366559916, 0.01259603502926633, 0.014804259064389239, 0.006116415474074245, 0.006781288603417748, 0.04069577405038757, 0.016778793438278258, 0.01897283888878102, 0.01832390108747583, 0.07812599893362324, 0.002962254344109083, 4.2048554744753824e-05, 0.0002238103351767069, 9.523997474768742e-05, 0.0005200448443643561, 0.00016872489921494353, 0.0005661422812375212, 0.0002791824804045882, 0.0007312175206979133, 0.04873564675659822, 0.01634749861630543, 0.0017569377442036523, 0.0001913455363586476, 0.006714635293616546, 8.449044682818052e-05, 0.00030841006190384545, 0.0032686970169763445, 0.005871734202759891, 0.0019213571600408086, 0.004536967337591905, 0.006859050935355847, 0.005319202569766147, 0.02782732741683144, 0.00516748393921808, 0.021132005357644496, 0.0011644991203162115, 0.0027817190845017253, 0.006112789646132433, 0.008028640083417802, 0.0012692347381076123, 0.005863116227885496, 0.011362942040987284, 0.009588107560505321, 0.003230215272296569, 0.005562687657783538, 0.014814582870448472, 0.013788101856366882, 0.004404936157351929, 0.005287599611263047, 1.575200082121126e-05, 8.180812195822928e-05, 0.008547861985514006, 0.002768742233742037, 0.01292689711014233, 0.0004311241532687182, 0.00034245906354993526, 0.0001626202609141136, 0.00019376841710366558, 5.846849317033116e-05, 0.0005971032709410448, 6.173066489507722e-06, 0.0007804211444204773, 0.0006015691500332959, 1.3881165602887428e-05, 4.166988296844418e-05, 2.905911173326329e-05, 0.001215075633558963, 0.0014923308590539296, 1.4489417273680594e-06, 0.009392199341675855], \"type\": \"scatter\", \"uid\": \"28a65fda-6624-406f-8a1b-7e1dcb9f0d54\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Gradient Boosting Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\")) {window._Plotly.Plots.resize(document.getElementById(\"fe9f6910-47e3-46ae-9587-8065966406f2\"));};})</script>"
      ]
     },
     "metadata": {}
    },
    {
     "output_type": "display_data",
     "data": {
      "application/vnd.plotly.v1+json": {
       "config": {
        "linkText": "Export to plot.ly",
        "plotlyServerURL": "https://plot.ly",
        "showLink": false
       },
       "data": [
        {
         "marker": {
          "color": [
           0.015393182385476729,
           0.03512599863758531,
           0.05557183760554524,
           0.0008387233707524554,
           0.15088973403589656,
           0.014489913994399542,
           0.010066538767026833,
           0.03146183979794839,
           0.01957886202422717,
           0.0177625669276864,
           0.01816203726028578,
           0.012608496266762054,
           0.014002408047461938,
           0.007555750460717009,
           0.008855556010923568,
           0.004776536313616299,
           0.007292789905578917,
           0.025049085351701934,
           0.009337323310831482,
           0.010541629795358925,
           0.028512120410617032,
           0.056180942471630524,
           0.005571112618312676,
           0.00002234536100233493,
           0.00017753718799262143,
           0.00005461302334240726,
           0.0004319162512488716,
           0.00009470096697713907,
           0.0007500166911336089,
           0.00022494394912366203,
           0.0009348008974143619,
           0.02482375350564333,
           0.01827397075749166,
           0.004239707925584192,
           0.0001124848112402303,
           0.00838825878272498,
           0.00005355299925273202,
           0.00033809722098171663,
           0.008486652458663294,
           0.006540146037259081,
           0.0010955450876590413,
           0.006333295942327574,
           0.010462149890389735,
           0.004783973761511346,
           0.04579578846314814,
           0.008392548201732528,
           0.04044848859253336,
           0.0008049282730632925,
           0.0016445986254421995,
           0.01979290928470183,
           0.011431580630468091,
           0.000747815962359408,
           0.005834656451855309,
           0.016588647592672236,
           0.011875500113340796,
           0.002123332318970263,
           0.005417053428851872,
           0.026635486154858314,
           0.017464953537206295,
           0.005294355259229973,
           0.004263096825712837,
           0.000010138642235602707,
           0.000925279750643909,
           0.026594244001964248,
           0.002679523334624341,
           0.02199750074102181,
           0.0018036498391462309,
           0.0009136764721092663,
           0.0001529156798654191,
           0.00018512791423758553,
           0.00011560099493080172,
           0.0013765138584327654,
           0.011612300776960202,
           0.0015199857495482995,
           0.002299202626716017,
           0.009897020723405443,
           0.010364162944318613,
           0.0011029339007777269,
           0.0016256246505594312,
           0.0033259410500596875,
           0.009438674964552127,
           0.011256792388436986
          ],
          "colorscale": "Portland",
          "reversescale": false,
          "showscale": true
         },
         "opacity": 0.6,
         "type": "bar",
         "uid": "3aadb222-91ce-4d34-ae5b-f5b2e1bd2098",
         "width": 0.5,
         "x": [
          "sodium",
          "electivesurgery",
          "vent",
          "dialysis",
          "gcs",
          "urine",
          "wbc",
          "temperature",
          "respiratoryrate",
          "heartrate",
          "meanbp",
          "creatinine",
          "ph",
          "hematocrit",
          "albumin",
          "pao2",
          "pco2",
          "bun",
          "glucose",
          "bilirubin",
          "fio2",
          "age",
          "thrombolytics",
          "aids",
          "hepaticfailure",
          "lymphoma",
          "metastaticcancer",
          "leukemia",
          "immunosuppression",
          "cirrhosis",
          "readmit",
          "offset",
          "admitsource_1.0",
          "admitsource_2.0",
          "admitsource_3.0",
          "admitsource_4.0",
          "admitsource_5.0",
          "admitsource_6.0",
          "admitsource_7.0",
          "admitsource_8.0",
          "diaggroup_ARF",
          "diaggroup_Asthma-Emphys",
          "diaggroup_CABG",
          "diaggroup_CHF",
          "diaggroup_CVA",
          "diaggroup_CVOther",
          "diaggroup_CardiacArrest",
          "diaggroup_ChestPainUnknown",
          "diaggroup_Coma",
          "diaggroup_DKA",
          "diaggroup_GIBleed",
          "diaggroup_GIObstruction",
          "diaggroup_Neuro",
          "diaggroup_Other",
          "diaggroup_Overdose",
          "diaggroup_PNA",
          "diaggroup_RespMedOther",
          "diaggroup_Sepsis",
          "diaggroup_Trauma",
          "diaggroup_ValveDz",
          "gender_Male",
          "gender_Other",
          "m1_True",
          "m2_True",
          "m3_True",
          "m4_True",
          "m5_True",
          "m6_True",
          "m7_True",
          "m8_True",
          "m9_True",
          "m10_True",
          "m11_True",
          "m12_True",
          "m13_True",
          "m14_True",
          "m15_True",
          "m16_True",
          "m17_True",
          "m18_True",
          "m19_True",
          "m20_True"
         ],
         "y": [
          0.015393182385476729,
          0.03512599863758531,
          0.05557183760554524,
          0.0008387233707524554,
          0.15088973403589656,
          0.014489913994399542,
          0.010066538767026833,
          0.03146183979794839,
          0.01957886202422717,
          0.0177625669276864,
          0.01816203726028578,
          0.012608496266762054,
          0.014002408047461938,
          0.007555750460717009,
          0.008855556010923568,
          0.004776536313616299,
          0.007292789905578917,
          0.025049085351701934,
          0.009337323310831482,
          0.010541629795358925,
          0.028512120410617032,
          0.056180942471630524,
          0.005571112618312676,
          0.00002234536100233493,
          0.00017753718799262143,
          0.00005461302334240726,
          0.0004319162512488716,
          0.00009470096697713907,
          0.0007500166911336089,
          0.00022494394912366203,
          0.0009348008974143619,
          0.02482375350564333,
          0.01827397075749166,
          0.004239707925584192,
          0.0001124848112402303,
          0.00838825878272498,
          0.00005355299925273202,
          0.00033809722098171663,
          0.008486652458663294,
          0.006540146037259081,
          0.0010955450876590413,
          0.006333295942327574,
          0.010462149890389735,
          0.004783973761511346,
          0.04579578846314814,
          0.008392548201732528,
          0.04044848859253336,
          0.0008049282730632925,
          0.0016445986254421995,
          0.01979290928470183,
          0.011431580630468091,
          0.000747815962359408,
          0.005834656451855309,
          0.016588647592672236,
          0.011875500113340796,
          0.002123332318970263,
          0.005417053428851872,
          0.026635486154858314,
          0.017464953537206295,
          0.005294355259229973,
          0.004263096825712837,
          0.000010138642235602707,
          0.000925279750643909,
          0.026594244001964248,
          0.002679523334624341,
          0.02199750074102181,
          0.0018036498391462309,
          0.0009136764721092663,
          0.0001529156798654191,
          0.00018512791423758553,
          0.00011560099493080172,
          0.0013765138584327654,
          0.011612300776960202,
          0.0015199857495482995,
          0.002299202626716017,
          0.009897020723405443,
          0.010364162944318613,
          0.0011029339007777269,
          0.0016256246505594312,
          0.0033259410500596875,
          0.009438674964552127,
          0.011256792388436986
         ]
        }
       ],
       "layout": {
        "autosize": true,
        "hovermode": "closest",
        "showlegend": false,
        "title": {
         "text": "Barplots of Mean Feature Importance"
        },
        "yaxis": {
         "gridwidth": 2,
         "ticklen": 5,
         "title": {
          "text": "Feature Importance"
         }
        }
       }
      },
      "text/html": [
       "<div id=\"36dd33b7-f855-4704-8faf-1fe58ba1203c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {\n",
       "    Plotly.newPlot(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\", [{\"marker\": {\"color\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"colorscale\": \"Portland\", \"reversescale\": false, \"showscale\": true}, \"opacity\": 0.6, \"width\": 0.5, \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"type\": \"bar\", \"uid\": \"3aadb222-91ce-4d34-ae5b-f5b2e1bd2098\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Barplots of Mean Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {window._Plotly.Plots.resize(document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\"));};})</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<div id=\"36dd33b7-f855-4704-8faf-1fe58ba1203c\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {\n",
       "    Plotly.newPlot(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\", [{\"marker\": {\"color\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"colorscale\": \"Portland\", \"reversescale\": false, \"showscale\": true}, \"opacity\": 0.6, \"width\": 0.5, \"x\": [\"sodium\", \"electivesurgery\", \"vent\", \"dialysis\", \"gcs\", \"urine\", \"wbc\", \"temperature\", \"respiratoryrate\", \"heartrate\", \"meanbp\", \"creatinine\", \"ph\", \"hematocrit\", \"albumin\", \"pao2\", \"pco2\", \"bun\", \"glucose\", \"bilirubin\", \"fio2\", \"age\", \"thrombolytics\", \"aids\", \"hepaticfailure\", \"lymphoma\", \"metastaticcancer\", \"leukemia\", \"immunosuppression\", \"cirrhosis\", \"readmit\", \"offset\", \"admitsource_1.0\", \"admitsource_2.0\", \"admitsource_3.0\", \"admitsource_4.0\", \"admitsource_5.0\", \"admitsource_6.0\", \"admitsource_7.0\", \"admitsource_8.0\", \"diaggroup_ARF\", \"diaggroup_Asthma-Emphys\", \"diaggroup_CABG\", \"diaggroup_CHF\", \"diaggroup_CVA\", \"diaggroup_CVOther\", \"diaggroup_CardiacArrest\", \"diaggroup_ChestPainUnknown\", \"diaggroup_Coma\", \"diaggroup_DKA\", \"diaggroup_GIBleed\", \"diaggroup_GIObstruction\", \"diaggroup_Neuro\", \"diaggroup_Other\", \"diaggroup_Overdose\", \"diaggroup_PNA\", \"diaggroup_RespMedOther\", \"diaggroup_Sepsis\", \"diaggroup_Trauma\", \"diaggroup_ValveDz\", \"gender_Male\", \"gender_Other\", \"m1_True\", \"m2_True\", \"m3_True\", \"m4_True\", \"m5_True\", \"m6_True\", \"m7_True\", \"m8_True\", \"m9_True\", \"m10_True\", \"m11_True\", \"m12_True\", \"m13_True\", \"m14_True\", \"m15_True\", \"m16_True\", \"m17_True\", \"m18_True\", \"m19_True\", \"m20_True\"], \"y\": [0.015393182385476729, 0.03512599863758531, 0.05557183760554524, 0.0008387233707524554, 0.15088973403589656, 0.014489913994399542, 0.010066538767026833, 0.03146183979794839, 0.01957886202422717, 0.0177625669276864, 0.01816203726028578, 0.012608496266762054, 0.014002408047461938, 0.007555750460717009, 0.008855556010923568, 0.004776536313616299, 0.007292789905578917, 0.025049085351701934, 0.009337323310831482, 0.010541629795358925, 0.028512120410617032, 0.056180942471630524, 0.005571112618312676, 2.234536100233493e-05, 0.00017753718799262143, 5.461302334240726e-05, 0.0004319162512488716, 9.470096697713907e-05, 0.0007500166911336089, 0.00022494394912366203, 0.0009348008974143619, 0.02482375350564333, 0.01827397075749166, 0.004239707925584192, 0.0001124848112402303, 0.00838825878272498, 5.355299925273202e-05, 0.00033809722098171663, 0.008486652458663294, 0.006540146037259081, 0.0010955450876590413, 0.006333295942327574, 0.010462149890389735, 0.004783973761511346, 0.04579578846314814, 0.008392548201732528, 0.04044848859253336, 0.0008049282730632925, 0.0016445986254421995, 0.01979290928470183, 0.011431580630468091, 0.000747815962359408, 0.005834656451855309, 0.016588647592672236, 0.011875500113340796, 0.002123332318970263, 0.005417053428851872, 0.026635486154858314, 0.017464953537206295, 0.005294355259229973, 0.004263096825712837, 1.0138642235602707e-05, 0.000925279750643909, 0.026594244001964248, 0.002679523334624341, 0.02199750074102181, 0.0018036498391462309, 0.0009136764721092663, 0.0001529156798654191, 0.00018512791423758553, 0.00011560099493080172, 0.0013765138584327654, 0.011612300776960202, 0.0015199857495482995, 0.002299202626716017, 0.009897020723405443, 0.010364162944318613, 0.0011029339007777269, 0.0016256246505594312, 0.0033259410500596875, 0.009438674964552127, 0.011256792388436986], \"type\": \"bar\", \"uid\": \"3aadb222-91ce-4d34-ae5b-f5b2e1bd2098\"}], {\"autosize\": true, \"hovermode\": \"closest\", \"showlegend\": false, \"title\": {\"text\": \"Barplots of Mean Feature Importance\"}, \"yaxis\": {\"gridwidth\": 2, \"ticklen\": 5, \"title\": {\"text\": \"Feature Importance\"}}}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\")) {window._Plotly.Plots.resize(document.getElementById(\"36dd33b7-f855-4704-8faf-1fe58ba1203c\"));};})</script>"
      ]
     },
     "metadata": {}
    },
    {
     "output_type": "display_data",
     "data": {
      "application/vnd.plotly.v1+json": {
       "config": {
        "linkText": "Export to plot.ly",
        "plotlyServerURL": "https://plot.ly",
        "showLink": false
       },
       "data": [
        {
         "colorscale": "Viridis",
         "reversescale": true,
         "showscale": true,
         "type": "heatmap",
         "uid": "ca5a2a9a-2059-4187-a451-d643a7f5d4b9",
         "x": [
          "ExtraTrees",
          "GradientBoost"
         ],
         "y": [
          "ExtraTrees",
          "GradientBoost"
         ],
         "z": [
          [
           1,
           0.45313604730131996
          ],
          [
           0.45313604730131996,
           1
          ]
         ]
        }
       ],
       "layout": {}
      },
      "text/html": [
       "<div id=\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {\n",
       "    Plotly.newPlot(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\", [{\"colorscale\": \"Viridis\", \"reversescale\": true, \"showscale\": true, \"x\": [\"ExtraTrees\", \"GradientBoost\"], \"y\": [\"ExtraTrees\", \"GradientBoost\"], \"z\": [[1.0, 0.45313604730131996], [0.45313604730131996, 1.0]], \"type\": \"heatmap\", \"uid\": \"0e643610-bd18-4b5d-b400-2f772e0de6bc\"}], {}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {window._Plotly.Plots.resize(document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\"));};})</script>"
      ],
      "text/vnd.plotly.v1+html": [
       "<div id=\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\" style=\"height: 525px; width: 100%;\" class=\"plotly-graph-div\"></div><script type=\"text/javascript\">require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {};window.PLOTLYENV.BASE_URL=\"https://plot.ly\";\n",
       "if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {\n",
       "    Plotly.newPlot(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\", [{\"colorscale\": \"Viridis\", \"reversescale\": true, \"showscale\": true, \"x\": [\"ExtraTrees\", \"GradientBoost\"], \"y\": [\"ExtraTrees\", \"GradientBoost\"], \"z\": [[1.0, 0.45313604730131996], [0.45313604730131996, 1.0]], \"type\": \"heatmap\", \"uid\": \"0e643610-bd18-4b5d-b400-2f772e0de6bc\"}], {}, {\"showLink\": false, \"linkText\": \"Export to plot.ly\", \"plotlyServerURL\": \"https://plot.ly\"}); \n",
       "}\n",
       "});</script><script type=\"text/javascript\">window.addEventListener(\"resize\", function(){if (document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\")) {window._Plotly.Plots.resize(document.getElementById(\"91f9ef4a-5fc9-4db8-ad82-9683e4fc14b7\"));};})</script>"
      ]
     },
     "metadata": {}
    },
    {
     "output_type": "stream",
     "name": "stdout",
     "text": [
      "For fold 1:\n",
      "Accuracy: 0.7351828499369483\n",
      "f-score: 0.7351828499369484\n"
     ]
    },
    {
     "output_type": "error",
     "ename": "NameError",
     "evalue": "name 'classification_report_imbalanced' is not defined",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-12-5ccabd3c0e33>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m    269\u001b[0m     \u001b[0mf1\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mf1_score\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maverage\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'micro'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    270\u001b[0m     \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34mf'f-score: {f1}'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 271\u001b[1;33m     \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mclassification_report_imbalanced\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    272\u001b[0m     \u001b[0mK\u001b[0m\u001b[1;33m=\u001b[0m \u001b[0mclassification_report_imbalanced\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    273\u001b[0m     \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread_fwf\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mio\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mStringIO\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mK\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mNameError\u001b[0m: name 'classification_report_imbalanced' is not defined"
     ]
    },
    {
     "output_type": "display_data",
     "data": {
      "text/plain": [
       "<Figure size 576x396 with 0 Axes>"
      ]
     },
     "metadata": {}
    }
   ],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "len(y_test)"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "list(map(abs,lr_features))"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "visualizer\n"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "fig.write_image(\"images/fig1.png\")"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "#lr_fit= lr.fit(X_train_oversampled, y_train_oversampled).tolist()\n",
    "lr_features = lr_fit.coef_\n",
    "len(list(lr_features.flat))"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "  \n",
    "    \n",
    "    model = AdaBoostClassifier() \n",
    "    model.fit(X_train_oversampled, y_train_oversampled)  \n",
    "    y_pred = model.predict(X_test.values)\n",
    "    visualizer = ROCAUC(model, classes=classes)\n",
    "    visualizer.fit(X_train_oversampled, y_train_oversampled)  # Fit the training data to the visualizer\n",
    "    visualizer.score(X_test.values, y_test)  # Evaluate the model on the test data\n",
    "    visualizer.poof(\"Ada_Indicator_Replace_{}.pdf\".format(fold), clear_figure=True) \n",
    "    print(f'For fold {fold}:')\n",
    "    print(f'Accuracy: {model.score(X_test.values, y_test)}')\n",
    "    f1=f1_score(y_test, y_pred, average='micro')\n",
    "    print(f'f-score: {f1}')\n",
    "    print(classification_report_imbalanced(y_test, y_pred))\n",
    "    \n",
    "    #\n",
    "\n",
    "    "
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    " feature_dataframe['mean'] = feature_dataframe.mean(axis= 1) # axis = 1 computes the mean row-wise\n",
    "    feature_dataframe.head(3)\n",
    "    \n",
    "    y = feature_dataframe['mean'].values\n",
    "    x = feature_dataframe['features'].values\n",
    "    data = [go.Bar(\n",
    "                x= x,\n",
    "                 y= y,\n",
    "                width = 0.5,\n",
    "                marker=dict(\n",
    "                   color = feature_dataframe['mean'].values,\n",
    "                colorscale='Portland',\n",
    "                showscale=True,\n",
    "                reversescale = False\n",
    "                ),\n",
    "                opacity=0.6\n",
    "            )]\n",
    "\n",
    "    layout= go.Layout(\n",
    "        autosize= True,\n",
    "        title= 'Barplots of Mean Feature Importance',\n",
    "        hovermode= 'closest',\n",
    "    #     xaxis= dict(\n",
    "    #         title= 'Pop',\n",
    "    #         ticklen= 5,\n",
    "    #         zeroline= False,\n",
    "    #         gridwidth= 2,\n",
    "    #     ),\n",
    "        yaxis=dict(\n",
    "            title= 'Feature Importance',\n",
    "            ticklen= 5,\n",
    "            gridwidth= 2\n",
    "        ),\n",
    "        showlegend= False\n",
    "    )\n",
    "    fig = go.Figure(data=data, layout=layout)\n",
    "    py.iplot(fig, filename='bar-direct-labels')\n",
    "    \n",
    "    base_predictions_train = pd.DataFrame( {\n",
    "     'ExtraTrees': et_oof_train.ravel(),\n",
    "     'GradientBoost': gb_oof_train.ravel()\n",
    "    })\n",
    "    base_predictions_train.head()\n",
    "    \n",
    "    data = [\n",
    "    go.Heatmap(\n",
    "        z= base_predictions_train.astype(float).corr().values ,\n",
    "        x=base_predictions_train.columns.values,\n",
    "        y= base_predictions_train.columns.values,\n",
    "          colorscale='Viridis',\n",
    "            showscale=True,\n",
    "            reversescale = True\n",
    "    )\n",
    "    ]\n",
    "    py.iplot(data, filename='labelled-heatmap')\n",
    "    \n",
    "    #-------------------------------------------------------------------------------------\n",
    "    x_train = np.concatenate(( et_oof_train, rf_oof_train, ada_oof_train, gb_oof_train, lr_oof_train), axis=1)\n",
    "    x_test = np.concatenate(( et_oof_test, rf_oof_test, ada_oof_test, gb_oof_test, lr_oof_test), axis=1)\n",
    "    \n",
    "    gbm = xgb.XGBClassifier(\n",
    "    #learning_rate = 0.02,\n",
    "     n_estimators= 2000,\n",
    "     max_depth= 4,\n",
    "     min_child_weight= 2,\n",
    "     #gamma=1,\n",
    "     gamma=0.9,                        \n",
    "     subsample=0.8,\n",
    "     colsample_bytree=0.8,\n",
    "     objective= 'binary:logistic',\n",
    "     nthread= -1,\n",
    "     scale_pos_weight=1).fit(x_train, y_train_oversampled)\n",
    "    predictions = gbm.predict(x_test)\n",
    "    "
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "len(lr_features)"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "cols = df2.drop('destcopy', 1).columns.values"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "import plotly.graph_objects as go"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "fig.show()"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "import numpy as np    \n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "x1 = np.random.randn(100)\n",
    "x2 = np.random.randn(100)\n",
    "x3 = np.random.randn(100)\n",
    "\n",
    "#Make difference in feature dependance\n",
    "y = (3 + x1 + 2*x2 + 5*x3 + 0.2*np.random.randn()) > 0\n",
    "\n",
    "X = pd.DataFrame({'x1':x1,'x2':x2,'x3':x3})\n",
    "\n",
    "#Scale your data\n",
    "scaler = StandardScaler()\n",
    "scaler.fit(X) \n",
    "X_scaled = pd.DataFrame(scaler.transform(X),columns = X.columns)\n",
    "\n",
    "clf = LogisticRegression(random_state = 0)\n",
    "clf.fit(X_scaled, y)\n",
    "\n",
    "feature_importance = abs(clf.coef_[0])\n",
    "feature_importance = 100.0 * (feature_importance / feature_importance.max())\n",
    "sorted_idx = np.argsort(feature_importance)\n",
    "pos = np.arange(sorted_idx.shape[0]) + .5\n",
    "\n",
    "featfig = plt.figure()\n",
    "featax = featfig.add_subplot(1, 1, 1)\n",
    "featax.barh(pos, feature_importance[sorted_idx], align='center')\n",
    "featax.set_yticks(pos)\n",
    "featax.set_yticklabels(np.array(X.columns)[sorted_idx], fontsize=8)\n",
    "featax.set_xlabel('Relative Feature Importance')\n",
    "\n",
    "plt.tight_layout()   \n",
    "plt.show()"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [
    "feature_importance"
   ],
   "outputs": [],
   "metadata": {}
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "source": [],
   "outputs": [],
   "metadata": {}
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}