|
a |
|
b/README.md |
|
|
1 |
# Diabetes Prediction Using Machine Learning |
|
|
2 |
|
|
|
3 |
## Objective |
|
|
4 |
|
|
|
5 |
### Techniques Used |
|
|
6 |
|
|
|
7 |
- Data Cleaning |
|
|
8 |
- Data Visualization |
|
|
9 |
- Machine Learning Modeling |
|
|
10 |
|
|
|
11 |
### Algortihms Used |
|
|
12 |
|
|
|
13 |
1. Logistic Regression |
|
|
14 |
2. Support Vector Machine |
|
|
15 |
3. KNN |
|
|
16 |
4. Random Forest Classifier |
|
|
17 |
5. Naivye Bayes |
|
|
18 |
6. Gradient Boosting |
|
|
19 |
|
|
|
20 |
### Model Evaluation Methods Used |
|
|
21 |
|
|
|
22 |
1. Accuracy Score |
|
|
23 |
2. ROC AUC Curve |
|
|
24 |
3. Cross Validation |
|
|
25 |
4. Confusion Matrix |
|
|
26 |
|
|
|
27 |
## Guide Lines |
|
|
28 |
|
|
|
29 |
### Packages and Tools Required: |
|
|
30 |
``` |
|
|
31 |
Pandas |
|
|
32 |
Matplotlib |
|
|
33 |
Seaborn |
|
|
34 |
Scikit Learn |
|
|
35 |
Jupyter Notebook |
|
|
36 |
``` |
|
|
37 |
### Package Installation |
|
|
38 |
``` |
|
|
39 |
pip install numpy |
|
|
40 |
pip install pandas |
|
|
41 |
pip install seaborn |
|
|
42 |
pip install scikit-learn |
|
|
43 |
pip install matplotlib |
|
|
44 |
``` |
|
|
45 |
Jupyter Notebook Installation Guide https://jupyter.org/install |