|
a |
|
b/flask/model.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
# coding: utf-8 |
|
|
3 |
|
|
|
4 |
# # Description: |
|
|
5 |
# The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. |
|
|
6 |
# |
|
|
7 |
# Attributes: |
|
|
8 |
# 1. Glucose Level |
|
|
9 |
# 2. BMI |
|
|
10 |
# 3. Blood pressure |
|
|
11 |
# 4. Pregnancies |
|
|
12 |
# 5. Skin thickness |
|
|
13 |
# 6. Insulin |
|
|
14 |
# 7. Diabetes pedigree function |
|
|
15 |
# 8. Age |
|
|
16 |
# 9. Outcome |
|
|
17 |
|
|
|
18 |
# # Step 0: Import libraries and Dataset |
|
|
19 |
|
|
|
20 |
# In[1]: |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
import pandas as pd |
|
|
24 |
import numpy as np |
|
|
25 |
import matplotlib.pyplot as plt |
|
|
26 |
import seaborn as sns |
|
|
27 |
|
|
|
28 |
import warnings |
|
|
29 |
warnings.filterwarnings('ignore') |
|
|
30 |
|
|
|
31 |
import pickle |
|
|
32 |
|
|
|
33 |
# In[2]: |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
dataset = pd.read_csv('diabetes.csv') |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
|
40 |
# # Step 3: Data Preprocessing |
|
|
41 |
|
|
|
42 |
# In[13]: |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
dataset_X = dataset.iloc[:,[1, 4, 5, 7]].values |
|
|
46 |
dataset_Y = dataset.iloc[:,8].values |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
# In[14]: |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
dataset_X |
|
|
53 |
|
|
|
54 |
|
|
|
55 |
# In[15]: |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
from sklearn.preprocessing import MinMaxScaler |
|
|
59 |
sc = MinMaxScaler(feature_range = (0,1)) |
|
|
60 |
dataset_scaled = sc.fit_transform(dataset_X) |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
# In[16]: |
|
|
64 |
|
|
|
65 |
|
|
|
66 |
dataset_scaled = pd.DataFrame(dataset_scaled) |
|
|
67 |
|
|
|
68 |
|
|
|
69 |
# In[17]: |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
X = dataset_scaled |
|
|
73 |
Y = dataset_Y |
|
|
74 |
|
|
|
75 |
|
|
|
76 |
# In[18]: |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
X |
|
|
80 |
|
|
|
81 |
|
|
|
82 |
# In[19]: |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
Y |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
# In[20]: |
|
|
89 |
|
|
|
90 |
|
|
|
91 |
from sklearn.model_selection import train_test_split |
|
|
92 |
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.20, random_state = 42, stratify = dataset['Outcome'] ) |
|
|
93 |
|
|
|
94 |
|
|
|
95 |
# # Step 4: Data Modelling |
|
|
96 |
|
|
|
97 |
# In[25]: |
|
|
98 |
|
|
|
99 |
|
|
|
100 |
from sklearn.svm import SVC |
|
|
101 |
svc = SVC(kernel = 'linear', random_state = 42) |
|
|
102 |
svc.fit(X_train, Y_train) |
|
|
103 |
|
|
|
104 |
|
|
|
105 |
# In[26]: |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
svc.score(X_test, Y_test) |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
# In[27]: |
|
|
112 |
|
|
|
113 |
|
|
|
114 |
Y_pred = svc.predict(X_test) |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
|
120 |
pickle.dump(svc, open('model.pkl','wb')) |
|
|
121 |
model = pickle.load(open('model.pkl','rb')) |
|
|
122 |
#print(model.predict(sc.transform(np.array([[86, 66, 26.6, 31]])))) |
|
|
123 |
|
|
|
124 |
|