import numpy as np
import pandas as pd
from flask import Flask, request, jsonify, render_template
import pickle
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
dataset = pd.read_csv('diabetes.csv')
dataset_X = dataset.iloc[:,[1, 2, 5, 7]].values
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0,1))
dataset_scaled = sc.fit_transform(dataset_X)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
'''
For rendering results on HTML GUI
'''
float_features = [float(x) for x in request.form.values()]
final_features = [np.array(float_features)]
prediction = model.predict( sc.transform(final_features) )
if prediction == 1:
pred = "You have Diabetes, please consult a Doctor."
elif prediction == 0:
pred = "You don't have Diabetes."
output = pred
return render_template('index.html', prediction_text='{}'.format(output))
if __name__ == "__main__":
app.run(debug=True)