# -*- coding: utf-8 -*-
# @Author : chq_N
# @Time : 2020/8/26
import os
import os.path as osp
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as tordata
from dataset import DataSet
from net import COVIDNet
from sampler import SoftmaxSampler
class Model:
def __init__(
self,
dout,
lr,
num_classes,
num_workers,
batch_size,
restore_iter,
total_iter,
save_name,
model_name,
pretrain_point,
train_source,
val_source,
test_source, ):
self.dout = dout
self.lr = lr
self.num_classes = num_classes
self.num_workers = num_workers
self.batch_size = batch_size
self.restore_iter = restore_iter
self.total_iter = total_iter
self.save_name = save_name
self.model_name = model_name
self.train_source = train_source
self.val_source = val_source
self.test_source = test_source
self.encoder = nn.DataParallel(COVIDNet(self.num_classes, dout=self.dout).cuda().float())
self.ce = nn.DataParallel(nn.CrossEntropyLoss(reduction='none').cuda())
optimizer = optim.Adam([
{'params': self.encoder.parameters()},
], lr=self.lr, weight_decay=1e-4)
self.optimizer = optimizer
self.loss = []
def fit(self):
if self.restore_iter != 0:
self.load_model()
self.encoder.train()
softmax_sampler = SoftmaxSampler(self.train_source, self.batch_size)
train_loader = tordata.DataLoader(
dataset=self.train_source,
batch_sampler=softmax_sampler,
num_workers=self.num_workers)
_time1 = datetime.now()
for radi_data, dvb_data, hlq_data, labels in train_loader:
if self.restore_iter > self.total_iter:
break
self.restore_iter += 1
self.optimizer.zero_grad()
pred, radi_pred, dvb_pred, hlq_pred = self.encoder(
radi_data.cuda().float(), dvb_data.cuda().float(),
hlq_data.cuda().float())
labels = (labels > 2).int()
main_loss = self.ce(pred, labels.cuda().long()).mean()
dvb_loss = self.ce(dvb_pred, labels.cuda().long()).mean()
radi_loss = self.ce(radi_pred, labels.cuda().long()).mean()
hlq_loss = self.ce(hlq_pred, labels.cuda().long()).mean()
total_loss = main_loss + (hlq_loss + dvb_loss + radi_loss) / 3
_total_loss = total_loss.cpu().data.numpy()
self.loss.append(_total_loss)
if _total_loss > 1e-9:
total_loss.backward()
self.optimizer.step()
if self.restore_iter % 100 == 0:
self.save_model()
def transform(self, subset='test', batch_size=1):
self.encoder.eval()
assert subset in ['train', 'val', 'test']
source = self.test_source
if subset == 'train':
source = self.train_source
elif subset == 'val':
source = self.val_source
data_loader = tordata.DataLoader(
dataset=source,
batch_size=batch_size,
sampler=tordata.sampler.SequentialSampler(source),
num_workers=self.num_workers)
pred_list = list()
feature_list = list()
label_list = list()
with torch.no_grad():
for i, x in enumerate(data_loader):
radi_data, dvb_data, hlq_data, labels = x
pred, radi_pred, dvb_pred, hlq_pred = self.encoder(
radi_data.cuda().float(), dvb_data.cuda().float(),
hlq_data.cuda().float())
pred_list.append(pred.data.cpu().numpy())
label_list.append(labels.numpy())
pred_list = np.concatenate(pred_list, 0)
label_list = np.concatenate(label_list, 0)
return pred_list, label_list
def save_model(self):
torch.save(self.encoder.state_dict(), osp.join(
'model', self.model_name,
'{}-{:0>5}-encoder.ptm'.format(self.save_name, self.restore_iter)))
torch.save(self.optimizer.state_dict(), osp.join(
'model', self.model_name,
'{}-{:0>5}-optimizer.ptm'.format(self.save_name, self.restore_iter)))
def load_model(self, restore_iter=None):
if restore_iter is None:
restore_iter = self.restore_iter
self.encoder.load_state_dict(torch.load(osp.join(
'model', self.model_name,
'{}-{:0>5}-encoder.ptm'.format(self.save_name, restore_iter))))
self.optimizer.load_state_dict(torch.load(osp.join(
'model', self.model_name,
'{}-{:0>5}-optimizer.ptm'.format(self.save_name, restore_iter))))
def load_pretrain(self, pretrain_point):
self.encoder.load_state_dict(torch.load(osp.join(
'model', pretrain_point)), False)
def init_model(fold, train_data, train_label, val_data, val_label, test_data, test_label):
train_source = DataSet(train_data, train_label)
val_source = DataSet(val_data, val_label)
test_source = DataSet(test_data, test_label)
print('train_len:', len(train_source))
print('test_len:', len(test_source))
_lr = 1e-4
print('Initialize lr as %f' % _lr)
model_config = {
'dout': True,
'lr': _lr,
'num_classes': 2,
'num_workers': 8,
'batch_size': 64,
'restore_iter': 0,
'total_iter': 5000,
'model_name': 'MGH-dw-all-' + fold,
'pretrain_point': None,
'train_source': train_source,
'val_source': val_source,
'test_source': test_source
}
model_config['save_name'] = '_'.join([
'{}'.format(model_config['model_name']),
'{}'.format(model_config['dout']),
'{}'.format(0.0001),
'{}'.format(model_config['batch_size']),
])
os.makedirs(osp.join('model', model_config['model_name']), exist_ok=True)
return Model(**model_config)