[434a55]: / DL_CV / model.py

Download this file

188 lines (156 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf-8 -*-
# @Author : chq_N
# @Time : 2020/8/26
import os
import os.path as osp
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as tordata
from dataset import DataSet
from net import COVIDNet
from sampler import SoftmaxSampler
class Model:
def __init__(
self,
dout,
lr,
num_classes,
num_workers,
batch_size,
restore_iter,
total_iter,
save_name,
model_name,
pretrain_point,
train_source,
val_source,
test_source, ):
self.dout = dout
self.lr = lr
self.num_classes = num_classes
self.num_workers = num_workers
self.batch_size = batch_size
self.restore_iter = restore_iter
self.total_iter = total_iter
self.save_name = save_name
self.model_name = model_name
self.train_source = train_source
self.val_source = val_source
self.test_source = test_source
self.encoder = nn.DataParallel(COVIDNet(self.num_classes, dout=self.dout).cuda().float())
self.ce = nn.DataParallel(nn.CrossEntropyLoss(reduction='none').cuda())
optimizer = optim.Adam([
{'params': self.encoder.parameters()},
], lr=self.lr, weight_decay=1e-4)
self.optimizer = optimizer
self.loss = []
def fit(self):
if self.restore_iter != 0:
self.load_model()
self.encoder.train()
softmax_sampler = SoftmaxSampler(self.train_source, self.batch_size)
train_loader = tordata.DataLoader(
dataset=self.train_source,
batch_sampler=softmax_sampler,
num_workers=self.num_workers)
_time1 = datetime.now()
for radi_data, dvb_data, hlq_data, labels in train_loader:
if self.restore_iter > self.total_iter:
break
self.restore_iter += 1
self.optimizer.zero_grad()
pred, radi_pred, dvb_pred, hlq_pred = self.encoder(
radi_data.cuda().float(), dvb_data.cuda().float(),
hlq_data.cuda().float())
labels = (labels > 2).int()
main_loss = self.ce(pred, labels.cuda().long()).mean()
dvb_loss = self.ce(dvb_pred, labels.cuda().long()).mean()
radi_loss = self.ce(radi_pred, labels.cuda().long()).mean()
hlq_loss = self.ce(hlq_pred, labels.cuda().long()).mean()
total_loss = main_loss + (hlq_loss + dvb_loss + radi_loss) / 3
_total_loss = total_loss.cpu().data.numpy()
self.loss.append(_total_loss)
if _total_loss > 1e-9:
total_loss.backward()
self.optimizer.step()
if self.restore_iter % 100 == 0:
self.save_model()
def transform(self, subset='test', batch_size=1):
self.encoder.eval()
assert subset in ['train', 'val', 'test']
source = self.test_source
if subset == 'train':
source = self.train_source
elif subset == 'val':
source = self.val_source
data_loader = tordata.DataLoader(
dataset=source,
batch_size=batch_size,
sampler=tordata.sampler.SequentialSampler(source),
num_workers=self.num_workers)
pred_list = list()
feature_list = list()
label_list = list()
with torch.no_grad():
for i, x in enumerate(data_loader):
radi_data, dvb_data, hlq_data, labels = x
pred, radi_pred, dvb_pred, hlq_pred = self.encoder(
radi_data.cuda().float(), dvb_data.cuda().float(),
hlq_data.cuda().float())
pred_list.append(pred.data.cpu().numpy())
label_list.append(labels.numpy())
pred_list = np.concatenate(pred_list, 0)
label_list = np.concatenate(label_list, 0)
return pred_list, label_list
def save_model(self):
torch.save(self.encoder.state_dict(), osp.join(
'model', self.model_name,
'{}-{:0>5}-encoder.ptm'.format(self.save_name, self.restore_iter)))
torch.save(self.optimizer.state_dict(), osp.join(
'model', self.model_name,
'{}-{:0>5}-optimizer.ptm'.format(self.save_name, self.restore_iter)))
def load_model(self, restore_iter=None):
if restore_iter is None:
restore_iter = self.restore_iter
self.encoder.load_state_dict(torch.load(osp.join(
'model', self.model_name,
'{}-{:0>5}-encoder.ptm'.format(self.save_name, restore_iter))))
self.optimizer.load_state_dict(torch.load(osp.join(
'model', self.model_name,
'{}-{:0>5}-optimizer.ptm'.format(self.save_name, restore_iter))))
def load_pretrain(self, pretrain_point):
self.encoder.load_state_dict(torch.load(osp.join(
'model', pretrain_point)), False)
def init_model(fold, train_data, train_label, val_data, val_label, test_data, test_label):
train_source = DataSet(train_data, train_label)
val_source = DataSet(val_data, val_label)
test_source = DataSet(test_data, test_label)
print('train_len:', len(train_source))
print('test_len:', len(test_source))
_lr = 1e-4
print('Initialize lr as %f' % _lr)
model_config = {
'dout': True,
'lr': _lr,
'num_classes': 2,
'num_workers': 8,
'batch_size': 64,
'restore_iter': 0,
'total_iter': 5000,
'model_name': 'MGH-dw-all-' + fold,
'pretrain_point': None,
'train_source': train_source,
'val_source': val_source,
'test_source': test_source
}
model_config['save_name'] = '_'.join([
'{}'.format(model_config['model_name']),
'{}'.format(model_config['dout']),
'{}'.format(0.0001),
'{}'.format(model_config['batch_size']),
])
os.makedirs(osp.join('model', model_config['model_name']), exist_ok=True)
return Model(**model_config)