Diff of /Code.py [000000] .. [34dc86]

Switch to unified view

a b/Code.py
1
#commit test
2
3
4
import pandas as pd
5
from sklearn.model_selection import train_test_split
6
from sklearn.preprocessing import StandardScaler
7
from sklearn.svm import SVC
8
from sklearn.ensemble import RandomForestClassifier
9
from sklearn.metrics import accuracy_score, classification_report
10
import warnings
11
12
13
14
15
# Load the dataset
16
data = pd.read_excel("C:/Users/manoj kumar/Downloads/modified_dataset.xlsx")
17
18
# Separate features and target variable
19
X = data[['Age', 'Gender', 'OutdoorJob', 'OutdoorActivities', 'SmokingHabit',
20
          'Humidity', 'Pressure', 'Temperature', 'UVIndex', 'WindSpeed']]
21
y = data['ACTScore']  # Assuming 'ACTScore' is the target variable
22
23
# Split data into train and test sets
24
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
25
26
# Standardize features
27
scaler = StandardScaler()
28
X_train_scaled = scaler.fit_transform(X_train)
29
X_test_scaled = scaler.transform(X_test)
30
31
# Train Support Vector Machine (SVM) classifier
32
svm_clf = SVC(kernel='linear', random_state=42)
33
svm_clf.fit(X_train_scaled, y_train)
34
35
# Train Random Forest classifier
36
rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)
37
rf_clf.fit(X_train_scaled, y_train)
38
39
# Predictions
40
svm_pred = svm_clf.predict(X_test_scaled)
41
rf_pred = rf_clf.predict(X_test_scaled)
42
43
# Evaluate models
44
print("Support Vector Machine Classifier:")
45
print("Accuracy:", accuracy_score(y_test, svm_pred))
46
print("Classification Report:")
47
print(classification_report(y_test, svm_pred))
48
49
print("\nRandom Forest Classifier:")
50
print("Accuracy:", accuracy_score(y_test, rf_pred))
51
print("Classification Report:")
52
53
# Print classification report
54
print(classification_report(y_test, rf_pred))
55