a b/Model Buliding/first_notebook.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import pandas as pd\n",
10
    "import numpy as np\n",
11
    "import matplotlib.pyplot as plt\n"
12
   ]
13
  },
14
  {
15
   "cell_type": "code",
16
   "execution_count": 2,
17
   "metadata": {},
18
   "outputs": [
19
    {
20
     "data": {
21
      "text/html": [
22
       "<div>\n",
23
       "<style scoped>\n",
24
       "    .dataframe tbody tr th:only-of-type {\n",
25
       "        vertical-align: middle;\n",
26
       "    }\n",
27
       "\n",
28
       "    .dataframe tbody tr th {\n",
29
       "        vertical-align: top;\n",
30
       "    }\n",
31
       "\n",
32
       "    .dataframe thead th {\n",
33
       "        text-align: right;\n",
34
       "    }\n",
35
       "</style>\n",
36
       "<table border=\"1\" class=\"dataframe\">\n",
37
       "  <thead>\n",
38
       "    <tr style=\"text-align: right;\">\n",
39
       "      <th></th>\n",
40
       "      <th>Pregnancies</th>\n",
41
       "      <th>Glucose</th>\n",
42
       "      <th>BloodPressure</th>\n",
43
       "      <th>SkinThickness</th>\n",
44
       "      <th>Insulin</th>\n",
45
       "      <th>BMI</th>\n",
46
       "      <th>DiabetesPedigreeFunction</th>\n",
47
       "      <th>Age</th>\n",
48
       "      <th>Outcome</th>\n",
49
       "    </tr>\n",
50
       "  </thead>\n",
51
       "  <tbody>\n",
52
       "    <tr>\n",
53
       "      <th>0</th>\n",
54
       "      <td>6</td>\n",
55
       "      <td>148</td>\n",
56
       "      <td>72</td>\n",
57
       "      <td>35</td>\n",
58
       "      <td>0</td>\n",
59
       "      <td>33.6</td>\n",
60
       "      <td>0.627</td>\n",
61
       "      <td>50</td>\n",
62
       "      <td>1</td>\n",
63
       "    </tr>\n",
64
       "    <tr>\n",
65
       "      <th>1</th>\n",
66
       "      <td>1</td>\n",
67
       "      <td>85</td>\n",
68
       "      <td>66</td>\n",
69
       "      <td>29</td>\n",
70
       "      <td>0</td>\n",
71
       "      <td>26.6</td>\n",
72
       "      <td>0.351</td>\n",
73
       "      <td>31</td>\n",
74
       "      <td>0</td>\n",
75
       "    </tr>\n",
76
       "    <tr>\n",
77
       "      <th>2</th>\n",
78
       "      <td>8</td>\n",
79
       "      <td>183</td>\n",
80
       "      <td>64</td>\n",
81
       "      <td>0</td>\n",
82
       "      <td>0</td>\n",
83
       "      <td>23.3</td>\n",
84
       "      <td>0.672</td>\n",
85
       "      <td>32</td>\n",
86
       "      <td>1</td>\n",
87
       "    </tr>\n",
88
       "    <tr>\n",
89
       "      <th>3</th>\n",
90
       "      <td>1</td>\n",
91
       "      <td>89</td>\n",
92
       "      <td>66</td>\n",
93
       "      <td>23</td>\n",
94
       "      <td>94</td>\n",
95
       "      <td>28.1</td>\n",
96
       "      <td>0.167</td>\n",
97
       "      <td>21</td>\n",
98
       "      <td>0</td>\n",
99
       "    </tr>\n",
100
       "    <tr>\n",
101
       "      <th>4</th>\n",
102
       "      <td>0</td>\n",
103
       "      <td>137</td>\n",
104
       "      <td>40</td>\n",
105
       "      <td>35</td>\n",
106
       "      <td>168</td>\n",
107
       "      <td>43.1</td>\n",
108
       "      <td>2.288</td>\n",
109
       "      <td>33</td>\n",
110
       "      <td>1</td>\n",
111
       "    </tr>\n",
112
       "  </tbody>\n",
113
       "</table>\n",
114
       "</div>"
115
      ],
116
      "text/plain": [
117
       "   Pregnancies  Glucose  BloodPressure  SkinThickness  Insulin   BMI  \\\n",
118
       "0            6      148             72             35        0  33.6   \n",
119
       "1            1       85             66             29        0  26.6   \n",
120
       "2            8      183             64              0        0  23.3   \n",
121
       "3            1       89             66             23       94  28.1   \n",
122
       "4            0      137             40             35      168  43.1   \n",
123
       "\n",
124
       "   DiabetesPedigreeFunction  Age  Outcome  \n",
125
       "0                     0.627   50        1  \n",
126
       "1                     0.351   31        0  \n",
127
       "2                     0.672   32        1  \n",
128
       "3                     0.167   21        0  \n",
129
       "4                     2.288   33        1  "
130
      ]
131
     },
132
     "execution_count": 2,
133
     "metadata": {},
134
     "output_type": "execute_result"
135
    }
136
   ],
137
   "source": [
138
    "df_diabetes = pd.read_csv('diabetes.csv')\n",
139
    "df_diabetes.head()"
140
   ]
141
  },
142
  {
143
   "cell_type": "code",
144
   "execution_count": 7,
145
   "metadata": {},
146
   "outputs": [
147
    {
148
     "data": {
149
      "text/html": [
150
       "<div>\n",
151
       "<style scoped>\n",
152
       "    .dataframe tbody tr th:only-of-type {\n",
153
       "        vertical-align: middle;\n",
154
       "    }\n",
155
       "\n",
156
       "    .dataframe tbody tr th {\n",
157
       "        vertical-align: top;\n",
158
       "    }\n",
159
       "\n",
160
       "    .dataframe thead th {\n",
161
       "        text-align: right;\n",
162
       "    }\n",
163
       "</style>\n",
164
       "<table border=\"1\" class=\"dataframe\">\n",
165
       "  <thead>\n",
166
       "    <tr style=\"text-align: right;\">\n",
167
       "      <th></th>\n",
168
       "      <th>age</th>\n",
169
       "      <th>sex</th>\n",
170
       "      <th>cp</th>\n",
171
       "      <th>trestbps</th>\n",
172
       "      <th>chol</th>\n",
173
       "      <th>fbs</th>\n",
174
       "      <th>restecg</th>\n",
175
       "      <th>thalach</th>\n",
176
       "      <th>exang</th>\n",
177
       "      <th>oldpeak</th>\n",
178
       "      <th>slope</th>\n",
179
       "      <th>ca</th>\n",
180
       "      <th>thal</th>\n",
181
       "      <th>target</th>\n",
182
       "    </tr>\n",
183
       "  </thead>\n",
184
       "  <tbody>\n",
185
       "    <tr>\n",
186
       "      <th>0</th>\n",
187
       "      <td>52</td>\n",
188
       "      <td>1</td>\n",
189
       "      <td>0</td>\n",
190
       "      <td>125</td>\n",
191
       "      <td>212</td>\n",
192
       "      <td>0</td>\n",
193
       "      <td>1</td>\n",
194
       "      <td>168</td>\n",
195
       "      <td>0</td>\n",
196
       "      <td>1.0</td>\n",
197
       "      <td>2</td>\n",
198
       "      <td>2</td>\n",
199
       "      <td>3</td>\n",
200
       "      <td>0</td>\n",
201
       "    </tr>\n",
202
       "    <tr>\n",
203
       "      <th>1</th>\n",
204
       "      <td>53</td>\n",
205
       "      <td>1</td>\n",
206
       "      <td>0</td>\n",
207
       "      <td>140</td>\n",
208
       "      <td>203</td>\n",
209
       "      <td>1</td>\n",
210
       "      <td>0</td>\n",
211
       "      <td>155</td>\n",
212
       "      <td>1</td>\n",
213
       "      <td>3.1</td>\n",
214
       "      <td>0</td>\n",
215
       "      <td>0</td>\n",
216
       "      <td>3</td>\n",
217
       "      <td>0</td>\n",
218
       "    </tr>\n",
219
       "    <tr>\n",
220
       "      <th>2</th>\n",
221
       "      <td>70</td>\n",
222
       "      <td>1</td>\n",
223
       "      <td>0</td>\n",
224
       "      <td>145</td>\n",
225
       "      <td>174</td>\n",
226
       "      <td>0</td>\n",
227
       "      <td>1</td>\n",
228
       "      <td>125</td>\n",
229
       "      <td>1</td>\n",
230
       "      <td>2.6</td>\n",
231
       "      <td>0</td>\n",
232
       "      <td>0</td>\n",
233
       "      <td>3</td>\n",
234
       "      <td>0</td>\n",
235
       "    </tr>\n",
236
       "    <tr>\n",
237
       "      <th>3</th>\n",
238
       "      <td>61</td>\n",
239
       "      <td>1</td>\n",
240
       "      <td>0</td>\n",
241
       "      <td>148</td>\n",
242
       "      <td>203</td>\n",
243
       "      <td>0</td>\n",
244
       "      <td>1</td>\n",
245
       "      <td>161</td>\n",
246
       "      <td>0</td>\n",
247
       "      <td>0.0</td>\n",
248
       "      <td>2</td>\n",
249
       "      <td>1</td>\n",
250
       "      <td>3</td>\n",
251
       "      <td>0</td>\n",
252
       "    </tr>\n",
253
       "    <tr>\n",
254
       "      <th>4</th>\n",
255
       "      <td>62</td>\n",
256
       "      <td>0</td>\n",
257
       "      <td>0</td>\n",
258
       "      <td>138</td>\n",
259
       "      <td>294</td>\n",
260
       "      <td>1</td>\n",
261
       "      <td>1</td>\n",
262
       "      <td>106</td>\n",
263
       "      <td>0</td>\n",
264
       "      <td>1.9</td>\n",
265
       "      <td>1</td>\n",
266
       "      <td>3</td>\n",
267
       "      <td>2</td>\n",
268
       "      <td>0</td>\n",
269
       "    </tr>\n",
270
       "  </tbody>\n",
271
       "</table>\n",
272
       "</div>"
273
      ],
274
      "text/plain": [
275
       "   age  sex  cp  trestbps  chol  fbs  restecg  thalach  exang  oldpeak  slope  \\\n",
276
       "0   52    1   0       125   212    0        1      168      0      1.0      2   \n",
277
       "1   53    1   0       140   203    1        0      155      1      3.1      0   \n",
278
       "2   70    1   0       145   174    0        1      125      1      2.6      0   \n",
279
       "3   61    1   0       148   203    0        1      161      0      0.0      2   \n",
280
       "4   62    0   0       138   294    1        1      106      0      1.9      1   \n",
281
       "\n",
282
       "   ca  thal  target  \n",
283
       "0   2     3       0  \n",
284
       "1   0     3       0  \n",
285
       "2   0     3       0  \n",
286
       "3   1     3       0  \n",
287
       "4   3     2       0  "
288
      ]
289
     },
290
     "execution_count": 7,
291
     "metadata": {},
292
     "output_type": "execute_result"
293
    }
294
   ],
295
   "source": [
296
    "df_heart = pd.read_csv(\"heart_complete.csv\")\n",
297
    "df_heart.head()"
298
   ]
299
  },
300
  {
301
   "cell_type": "code",
302
   "execution_count": 8,
303
   "metadata": {},
304
   "outputs": [
305
    {
306
     "data": {
307
      "text/html": [
308
       "<div>\n",
309
       "<style scoped>\n",
310
       "    .dataframe tbody tr th:only-of-type {\n",
311
       "        vertical-align: middle;\n",
312
       "    }\n",
313
       "\n",
314
       "    .dataframe tbody tr th {\n",
315
       "        vertical-align: top;\n",
316
       "    }\n",
317
       "\n",
318
       "    .dataframe thead th {\n",
319
       "        text-align: right;\n",
320
       "    }\n",
321
       "</style>\n",
322
       "<table border=\"1\" class=\"dataframe\">\n",
323
       "  <thead>\n",
324
       "    <tr style=\"text-align: right;\">\n",
325
       "      <th></th>\n",
326
       "      <th>Age</th>\n",
327
       "      <th>Gender</th>\n",
328
       "      <th>Height</th>\n",
329
       "      <th>Weight</th>\n",
330
       "      <th>BMI</th>\n",
331
       "      <th>PhysicalActivityLevel</th>\n",
332
       "      <th>ObesityCategory</th>\n",
333
       "    </tr>\n",
334
       "  </thead>\n",
335
       "  <tbody>\n",
336
       "    <tr>\n",
337
       "      <th>0</th>\n",
338
       "      <td>56</td>\n",
339
       "      <td>Male</td>\n",
340
       "      <td>173.575262</td>\n",
341
       "      <td>71.982051</td>\n",
342
       "      <td>23.891783</td>\n",
343
       "      <td>4</td>\n",
344
       "      <td>Normal weight</td>\n",
345
       "    </tr>\n",
346
       "    <tr>\n",
347
       "      <th>1</th>\n",
348
       "      <td>69</td>\n",
349
       "      <td>Male</td>\n",
350
       "      <td>164.127306</td>\n",
351
       "      <td>89.959256</td>\n",
352
       "      <td>33.395209</td>\n",
353
       "      <td>2</td>\n",
354
       "      <td>Obese</td>\n",
355
       "    </tr>\n",
356
       "    <tr>\n",
357
       "      <th>2</th>\n",
358
       "      <td>46</td>\n",
359
       "      <td>Female</td>\n",
360
       "      <td>168.072202</td>\n",
361
       "      <td>72.930629</td>\n",
362
       "      <td>25.817737</td>\n",
363
       "      <td>4</td>\n",
364
       "      <td>Overweight</td>\n",
365
       "    </tr>\n",
366
       "    <tr>\n",
367
       "      <th>3</th>\n",
368
       "      <td>32</td>\n",
369
       "      <td>Male</td>\n",
370
       "      <td>168.459633</td>\n",
371
       "      <td>84.886912</td>\n",
372
       "      <td>29.912247</td>\n",
373
       "      <td>3</td>\n",
374
       "      <td>Overweight</td>\n",
375
       "    </tr>\n",
376
       "    <tr>\n",
377
       "      <th>4</th>\n",
378
       "      <td>60</td>\n",
379
       "      <td>Male</td>\n",
380
       "      <td>183.568568</td>\n",
381
       "      <td>69.038945</td>\n",
382
       "      <td>20.487903</td>\n",
383
       "      <td>3</td>\n",
384
       "      <td>Normal weight</td>\n",
385
       "    </tr>\n",
386
       "  </tbody>\n",
387
       "</table>\n",
388
       "</div>"
389
      ],
390
      "text/plain": [
391
       "   Age  Gender      Height     Weight        BMI  PhysicalActivityLevel  \\\n",
392
       "0   56    Male  173.575262  71.982051  23.891783                      4   \n",
393
       "1   69    Male  164.127306  89.959256  33.395209                      2   \n",
394
       "2   46  Female  168.072202  72.930629  25.817737                      4   \n",
395
       "3   32    Male  168.459633  84.886912  29.912247                      3   \n",
396
       "4   60    Male  183.568568  69.038945  20.487903                      3   \n",
397
       "\n",
398
       "  ObesityCategory  \n",
399
       "0   Normal weight  \n",
400
       "1           Obese  \n",
401
       "2      Overweight  \n",
402
       "3      Overweight  \n",
403
       "4   Normal weight  "
404
      ]
405
     },
406
     "execution_count": 8,
407
     "metadata": {},
408
     "output_type": "execute_result"
409
    }
410
   ],
411
   "source": [
412
    "df_obesity = pd.read_csv(\"obesity_data.csv\")\n",
413
    "df_obesity.head()"
414
   ]
415
  },
416
  {
417
   "cell_type": "code",
418
   "execution_count": null,
419
   "metadata": {},
420
   "outputs": [],
421
   "source": []
422
  }
423
 ],
424
 "metadata": {
425
  "kernelspec": {
426
   "display_name": "Python 3.9.18 ('ds_ml')",
427
   "language": "python",
428
   "name": "python3"
429
  },
430
  "language_info": {
431
   "codemirror_mode": {
432
    "name": "ipython",
433
    "version": 3
434
   },
435
   "file_extension": ".py",
436
   "mimetype": "text/x-python",
437
   "name": "python",
438
   "nbconvert_exporter": "python",
439
   "pygments_lexer": "ipython3",
440
   "version": "3.9.18"
441
  },
442
  "orig_nbformat": 4,
443
  "vscode": {
444
   "interpreter": {
445
    "hash": "bcc4fb5aa31885ae3822c808f45050c24798a2479b24a824a4f952e5682b37fd"
446
   }
447
  }
448
 },
449
 "nbformat": 4,
450
 "nbformat_minor": 2
451
}