Diff of /app.py [000000] .. [b8dc97]

Switch to unified view

a b/app.py
1
import os
2
from flask import Flask, flash, request, redirect, url_for, render_template, send_from_directory
3
from werkzeug.utils import secure_filename
4
from tensorflow.keras.models import load_model
5
import numpy as np
6
#from keras.preprocessing import image
7
from tensorflow.keras.preprocessing import image
8
9
10
11
model=load_model("Esophageal_model.h5")
12
13
UPLOAD_FOLDER = 'static/img'
14
if not os.path.exists(UPLOAD_FOLDER):
15
    os.makedirs(UPLOAD_FOLDER)
16
17
18
ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'}
19
20
app = Flask(__name__)
21
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
22
def allowed_file(filename):
23
    return '.' in filename and \
24
           filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
25
26
27
28
# Home Page
29
@app.route('/')
30
def index():
31
    return render_template('home.html')
32
33
34
@app.route('/prediction', methods=['GET', 'POST'])
35
def upload_file():
36
    if request.method == 'POST':
37
        import uuid
38
        u = uuid.uuid4()
39
        # check if the post request has the file part
40
        if 'file' not in request.files:
41
            flash('No file part')
42
            return redirect(request.url)
43
        file = request.files['file']
44
        # if user does not select file, browser also
45
        # submit an empty part without filename
46
        if file.filename == '':
47
            flash('No selected file')
48
            return redirect(request.url)
49
        if file and allowed_file(file.filename):
50
            filename = secure_filename(file.filename)
51
            filename="temp"+u.hex+".jpg"
52
            fullname=os.path.join(UPLOAD_FOLDER, "temp"+u.hex+".jpg")
53
            file.save(fullname)
54
            test_image = image.load_img('static/img/'+filename, target_size = (224,224))
55
            test_image = image.img_to_array(test_image)
56
            test_image = np.expand_dims(test_image, axis = 0)
57
            test_image = test_image.astype('float') / 255
58
            result = model.predict(test_image)
59
            pred_prob = result.item()
60
            print(result)
61
            if result[0]>0.5:
62
                label = 'NON-Esophageal'
63
                accuracy = round(pred_prob * 100, 2)
64
            else:
65
                pred_1 = round((1 - pred_prob) * 100, 2)
66
                if pred_1 < 75:
67
                    label = 'Early Detection of Esophageal'
68
                    accuracy = round((1 - pred_prob) * 100, 2)
69
                else:
70
                    label = 'Esophageal'
71
                    accuracy = round((1 - pred_prob) * 100, 2)
72
                    
73
         
74
    return render_template('index.html', label=label, image_file_name=filename, accuracy=accuracy)
75
76
77
@app.route('/upload/<filename>')
78
def send_file(filename):
79
    return send_from_directory(UPLOAD_FOLDER, filename)
80
81
82
if __name__ == '__main__':
83
    app.run(debug=False)
84
    
85
    
86