|
a |
|
b/main.py |
|
|
1 |
import argparse |
|
|
2 |
from networks import ( |
|
|
3 |
branchy_linear_network, |
|
|
4 |
deep_linear_network, |
|
|
5 |
dual_input_model, |
|
|
6 |
seq_model, |
|
|
7 |
simple_branchy_linear_network |
|
|
8 |
) |
|
|
9 |
from data_generator import data_generator |
|
|
10 |
from sklearn.metrics import cohen_kappa_score, f1_score |
|
|
11 |
from tensorflow.keras import optimizers |
|
|
12 |
import tensorflow as tf |
|
|
13 |
import tensorflow_addons as tfa |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
if __name__ == '__main__': |
|
|
17 |
parser = argparse.ArgumentParser(description='Process the inputs') |
|
|
18 |
parser.add_argument( |
|
|
19 |
'--model', |
|
|
20 |
type=str, |
|
|
21 |
help='which model would you like to run', |
|
|
22 |
default='simple_branchy_linear_network' |
|
|
23 |
) |
|
|
24 |
parser.add_argument( |
|
|
25 |
'--epochs', |
|
|
26 |
type=int, |
|
|
27 |
help='how many epochs', |
|
|
28 |
default=12 |
|
|
29 |
) |
|
|
30 |
parser.add_argument( |
|
|
31 |
'--verbose', |
|
|
32 |
type=int, |
|
|
33 |
help='0,1,2', |
|
|
34 |
default=1 |
|
|
35 |
) |
|
|
36 |
|
|
|
37 |
args = parser.parse_args() |
|
|
38 |
model_ = args.model |
|
|
39 |
epochs = args.epochs |
|
|
40 |
verbose = args.verbose |
|
|
41 |
|
|
|
42 |
X_train, X_test, y_train, y_test, y_train_categorical, y_test_categorical, class_weight = data_generator( |
|
|
43 |
'data/challenge_1_gut_microbiome_data.csv' |
|
|
44 |
) |
|
|
45 |
|
|
|
46 |
# selecting your model |
|
|
47 |
if model_ == 'simple_branchy_linear_network': |
|
|
48 |
model = simple_branchy_linear_network.simple_branchy_linear_network(class_weight) |
|
|
49 |
elif model_ == 'branchy_linear_network': |
|
|
50 |
model = branchy_linear_network.branchy_linear_network(class_weight) |
|
|
51 |
elif model_ == 'seq_model': |
|
|
52 |
model = seq_model.seq_model() |
|
|
53 |
elif model_ == 'deep_linear_network': |
|
|
54 |
model = deep_linear_network.deep_linear_network(class_weight) |
|
|
55 |
elif model_ == 'dual_input_model': |
|
|
56 |
model = dual_input_model.dual_input_model() |
|
|
57 |
|
|
|
58 |
print(model.summary()) |
|
|
59 |
|
|
|
60 |
# compile the model |
|
|
61 |
adam = optimizers.Adam(learning_rate=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) |
|
|
62 |
model.compile( |
|
|
63 |
optimizer=adam, |
|
|
64 |
loss=tf.keras.losses.CategoricalCrossentropy(), |
|
|
65 |
metrics=[ |
|
|
66 |
tfa.metrics.CohenKappa(num_classes=4, weightage='quadratic'), |
|
|
67 |
tfa.metrics.F1Score(num_classes=4), |
|
|
68 |
'accuracy' |
|
|
69 |
] |
|
|
70 |
) |
|
|
71 |
|
|
|
72 |
# create call backs |
|
|
73 |
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau( |
|
|
74 |
monitor='val_loss', |
|
|
75 |
factor=0.5, |
|
|
76 |
patience=5, |
|
|
77 |
verbose=verbose, |
|
|
78 |
min_lr=1e-8, |
|
|
79 |
) |
|
|
80 |
|
|
|
81 |
checkpoint = tf.keras.callbacks.ModelCheckpoint( |
|
|
82 |
'models/checkpoint', |
|
|
83 |
monitor='val_cohen_kappa', |
|
|
84 |
verbose=verbose, |
|
|
85 |
save_best_only=True, |
|
|
86 |
mode='max', |
|
|
87 |
save_weights_only=False |
|
|
88 |
) |
|
|
89 |
|
|
|
90 |
# fit the model |
|
|
91 |
model.fit( |
|
|
92 |
x=X_train, |
|
|
93 |
y=y_train_categorical, |
|
|
94 |
batch_size=16, |
|
|
95 |
epochs=epochs, |
|
|
96 |
verbose=verbose, |
|
|
97 |
validation_data=(X_test, y_test_categorical), |
|
|
98 |
shuffle=True, |
|
|
99 |
callbacks=[ |
|
|
100 |
reduce_lr, |
|
|
101 |
checkpoint |
|
|
102 |
] |
|
|
103 |
) |
|
|
104 |
|
|
|
105 |
# evaluate the model |
|
|
106 |
# load the best model |
|
|
107 |
model.load_weights('models/checkpoint') |
|
|
108 |
|
|
|
109 |
y_prob = model.predict(X_test) |
|
|
110 |
y_classes = y_prob.argmax(axis=-1) |
|
|
111 |
|
|
|
112 |
ck_score = cohen_kappa_score( |
|
|
113 |
y_test, |
|
|
114 |
y_classes, |
|
|
115 |
weights='quadratic' |
|
|
116 |
) |
|
|
117 |
|
|
|
118 |
f1_score = f1_score( |
|
|
119 |
y_test, |
|
|
120 |
y_classes, |
|
|
121 |
labels=[0,1,2,3], |
|
|
122 |
average='weighted', |
|
|
123 |
) |
|
|
124 |
|
|
|
125 |
print('Results:') |
|
|
126 |
print('cohen kappa score:', ck_score) |
|
|
127 |
print('f1_score:', f1_score) |