import pytorch_lightning as pl
import os
import torch
import torchvision.transforms as T
from torch.utils.data import DataLoader
from ignite.metrics import Accuracy
import segmentation_models_pytorch as smp
from models import get_model
from eval import get_loss_fn, SegmentationEvaluator, SimCLREvaluator
from util import constants as C
from .logger import TFLogger
from data import SegmentationDemoDataset, SegmentationDataset
from torch.nn.functional import softmax
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
import cv2
import pdb
from torch.utils.data.sampler import Sampler
class BatchSampler(Sampler):
def __init__(self, batches):
self.batches = batches
def __iter__(self):
for batch in self.batches:
yield batch
def __len__(self):
return len(self.batches)
class SegmentationTask(pl.LightningModule, TFLogger):
"""Standard interface for the trainer to interact with the model."""
def __init__(self, params):
super().__init__() #Initialize parent classes (pl.LightningModule params)
self.save_hyperparameters(params) #Save hyperparameters to experiment directory, pytorch lightning function
self.model = get_model(params) #Instantiates model from model folder
self.loss = get_loss_fn(params)
self.dataset_folder = params['dataset_folder']
self.augmentation = params['augmentation']
self.n_workers = params['num_workers']
self.lr = params['lr']
self.batch_size = params['batch_size']
self.model_name = params['model']
self.pretraining = params.get('pretraining', False)
self.aux = params.get('aux_task', None)
#if self.aux == "simclr":
# self.evaluator = SimCLREvaluator()
#else:
self.evaluator = SegmentationEvaluator()
#DEBUGGING STEPS - DISPLAY IMAGES########################################
def show_img(self, img, mask=None):
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
plt.imshow(img, cmap='bone')
if mask is not None:
plt.imshow(mask, alpha=0.5)
handles = [Rectangle((0,0),1,1, color=_c) for _c in [(0.667,0.0,0.0), (0.0,0.667,0.0), (0.0,0.0,0.667)]]
labels = ["Large Bowel", "Small Bowel", "Stomach"]
plt.legend(handles,labels)
plt.axis('off')
def plot_batch(self, imgs, msks, folder, batch_idx, size=3, loss = None):
plt.figure(figsize=(5*5, 5))
for idx in range(size):
plt.subplot(1, 5, idx+1)
img = imgs[idx,].permute((1, 2, 0)).cpu().numpy()*255.0
img = img.astype('uint8')
msk = msks[idx,].permute((1, 2, 0)).cpu().numpy()*255.0
self.show_img(img, msk)
plt.tight_layout()
#plt.show()
if not os.path.exists('./' + folder + '/'):
os.mkdir(folder + '/')
plt.savefig( './' + folder + '/'+ str(round(loss, 3)) + '_masks_'+ str(batch_idx) + '.png', bbox_inches='tight')
########################################################################
def training_step(self, batch, batch_idx): #Batch of data from train dataloader passed here
images, masks = map(list, zip(*batch))
images = torch.stack(images)
masks = torch.stack(masks)
#Display images
#self.plot_batch(images, masks, batch_idx, 5)
if ((self.model_name == "CLUNet") & (self.pretraining== False) & (self.aux is not None)):
logits_masks, aux_out = self.model(images, aux = self.aux)
loss, aux_loss = self.loss(logits_masks, masks, self.aux, aux_out)
self.log(f"{self.aux}_loss", aux_loss)
self.log("loss", loss)
elif ((self.model_name == "CLUNet") & self.pretraining & (self.aux is not None)):
aux_out = self.model(images, aux = self.aux, pretraining = True)
loss = self.loss(None, None, self.aux, aux_out)
self.log(f"{self.aux}_loss", loss)
else:
logits_masks = self.model(images)
loss = self.loss(logits_masks, masks)
self.log("loss", loss)
return loss
def validation_step(self, batch, batch_idx): #Called once for every batch
images, masks = map(list, zip(*batch))
images = torch.stack(images)
masks = torch.stack(masks)
if self.pretraining:
aux_out = self.model(images, aux = self.aux, pretraining = True)
loss = self.loss(None, None, self.aux, aux_out)
else:
logits_masks = self.model(images)
loss = self.loss(logits_masks, masks)
self.evaluator.process(batch, logits_masks)
return loss
def validation_epoch_end(self, outputs): #outputs are loss tensors from validation step
avg_loss = torch.stack(outputs).mean()
if self.pretraining == False:
self.log("val_loss", avg_loss)
metrics = self.evaluator.evaluate()
self.evaluator.reset()
self.log_dict(metrics, prog_bar=True)
else:
self.log("val_loss", avg_loss)
def test_step(self, batch, batch_idx):
images, masks = map(list, zip(*batch))
images = torch.stack(images)
masks = torch.stack(masks)
logits_masks = self.model.forward(images)
loss = self.loss(logits_masks, masks).item()
#if round(loss, 3) != 0.0:
# folder = './images/unet_simple_baseline_patient/'
# #Plot truth on left and prediction on right
# images = torch.concat([images, images])
# masks = torch.concat([masks, logits_masks])
# self.plot_batch(images, masks, folder, batch_idx, 2, loss = loss)
self.evaluator.process(batch, logits_masks)
def test_epoch_end(self, outputs):
metrics = self.evaluator.evaluate()
self.log_dict(metrics)
return metrics
def predict_step(self, batch, batch_idx):
images, masks = map(list, zip(*batch))
images = torch.stack(images)
masks = torch.stack(masks)
logits_masks = self.model.forward(images)
self.evaluator.process(batch, logits_masks)
def configure_optimizers(self):
if self.pretraining:
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.parameters()), lr=2e-3)
else:
optimizer = torch.optim.Adam(self.parameters(), lr=2e-3)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,T_max=50, eta_min=1e-6)
return [optimizer], [scheduler]
def train_dataloader(self): #Called during init
dataset = SegmentationDataset(os.path.join(self.dataset_folder, 'train_dataset.csv'),
split="train",
augmentation=self.augmentation,
image_size=224,
pretrained=True)
batch_lists = dataset.get_batch_list()
if self.model_name == "CLUNet":
return DataLoader(dataset, batch_sampler = BatchSampler(batch_lists), #For entire batch
num_workers=self.n_workers,
collate_fn=lambda x: x)
else:
return DataLoader(dataset, shuffle=True, #For entire batch
batch_size=self.batch_size, num_workers=self.n_workers,
collate_fn=lambda x: x)
def val_dataloader(self): #Called during init
dataset = SegmentationDataset(os.path.join(self.dataset_folder, 'val_dataset.csv'),
split="val",
augmentation=self.augmentation,
image_size=224,
pretrained=True)
return DataLoader(dataset, shuffle=False, num_workers = self.n_workers,
batch_size=4, collate_fn=lambda x: x)
def test_dataloader(self): #Called during init
dataset = SegmentationDataset(os.path.join(self.dataset_folder, 'val_dataset.csv'),
split="test",
augmentation=self.augmentation,
image_size=224,
pretrained=True)
return DataLoader(dataset, shuffle=False,
#batch_size=1, num_workers=self.n_workers, collate_fn=lambda x: x)
batch_size=1, num_workers=0, collate_fn=lambda x: x)
def predict_dataloader(self): #Called during init
dataset = SegmentationDataset(os.path.join(self.dataset_folder, 'test_dataset.csv'),
split="test",
augmentation='none',
image_size=224,
pretrained=True)
return DataLoader(dataset, shuffle=False,
batch_size=1, num_workers=self.n_workers, collate_fn=lambda x: x)
#Process
#1. Call Trainer.fit
#2. Run validation step twice
#3. Run validation epoch end as a dummy run
#4. Call training step for all training batches, till end of epoch
#5. Call validation step for all validation batches till validation batches exhausted
#6. Compute validation metric at validation epoch end, log it, save checkpoint if validation metrics improve
#7. Return to training step 4 and continue
#Test steps are only called when you call main.py