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Background / Introduction

Problem Statement

Dataset

In 2019, approximately 2.5 million people were being treated for 

gastro-intestinal tract cancer worldwide using radiation therapy. 

Radiation therapy requires manually tracing out the stomach and 

intestines in MRI scans in order to ensure that x-ray beams are 

directed to avoid those crucial organs. Deep learning and computer 

vision methods can be employed to help segment the stomach and 

intestines, improving speed and efficiency of treatment. 

Our dataset is a Kaggle dataset consisting of 85 different cases (patients) 
with roughly 3-5 days of scans per patient. Each day consists of ~150 scan 
slices. In a scan, every pixel takes on at least 1 out of 4 classes: (i) Stomach, 
(ii) Small Intestine, (iii) Large Intestine, (iv) Others/Background. 

Processing steps:
1. Run length decoding for mask decoding
2. Create one mask for each organ class; masks concatenated together
3. Min-max image normalization, resizing scans to 224x224 with bilinear 

interpolation to retain [0,1] values for masks
4. We split our dataset in a 70/20/10 ratio. Two ways of splitting data:

Patient-day: Entire days for a given patient are withheld from the train 
set; mimics Kaggle unseen test set
Patient: Entire cases are withheld from the train set → model is not able 
to overfit to patient-specific features

Our project investigates methods to improve upon baseline methods 
of semantic segmentation in medical imaging. Traditionally, improving 
upon the performance of semantic segmentation models requires 
training on larger quantities of labelled data; however, labelling GI 
scans is time-consuming and laborious. We aim to explore whether 
we can improve the performance of conventional semantic 
segmentation models by incorporating contextual information from 
scans that requires no additional annotation cost.

Our baseline is a UNet, which 
comprises an encoder and decoder 
portion. The encoder downsamples 
the image and extracts feature 
representations. The decoder 
upsamples the image and obtains 
the mask labels.

Methods

We experiment with three techniques:
● Multi-task Learning: Train segmentation task alongside an auxiliary task 

which shares similarities with the main task + doesn’t require manual 
labelling -> additional signal! 

     Auxiliary tasks:

● Feature-wise Linear Modulation: Condition intermediate model output on 
image metadata (slice position, case number, etc.)

● Different encoder architecture: We experiment with a ResNet50 encoder 
backbone and a more parsimonious backbone with fewer Conv layers and no 
skip connections.

Experiments & Analysis

1. Multi-task learning can help or hurt, depending on allocation of 
weights in loss function, and distributions of train and test data

2. Since contrastive learning learns global relationships between 
images, it tends to over-predict the presence of small classes

3. Adding image metadata is universally helpful 
4. In the case of medical imaging, using a smaller architecture leads 

to faster convergence despite less expressivity
5. Potential avenues of future work:

○ Adaptive weight loss functions, improving contrastive learning 
setup (MoCoV2 and data augmentation), different 
architectures (DeepLab), ensembling

Contrastive Learning helps 
by over-predicting classes 
with less data

Contrastive Learning hurts 
by over-predicting classes 
with less data

Lee et al (2022) - UW-Madison GI Tract Image Segmentation Competition

Conclusions & Future Work

Table 1: Test Dice Coefficient Results (Patient-Day Split) 

Table 2: Test Dice Coefficient Results (Patient Split) 

Task 1: Predicting the slice position of a scan (in image name) from anatomical structure

Task 2: Contrastive Learning - Positives are adjacent scans from the same person and day


