import os
import math
import random
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torchvision.transforms.functional as TF
from matplotlib.figure import Figure
from pathlib import Path
from torch.utils.data import Dataset, DataLoader
from utils import get_output_shape
class GIImage(object):
organs = ["stomach", "small_bowel", "large_bowel"]
def __init__(self, fpath: Path, label_df: pd.DataFrame = None):
case_day = str(fpath).split('/')[-3]
fname = fpath.name # file name
metadata = fname.rstrip(".png").split('_')
slice_no = metadata[1]
numbers = metadata[2:]
# metadata: image id
self.id = f"{case_day}_slice_{slice_no}"
# metadata: slice width/height and pixel width/height
self.sw = int(numbers[0])
self.sh = int(numbers[1])
self.pw = float(numbers[2])
self.ph = float(numbers[3])
# data: 2D array
self.data = plt.imread(fpath)
self.labels = None
if label_df is not None:
self.labels = self.get_labels(label_df)
@property
def tensor(self) -> torch.Tensor:
return torch.from_numpy(self.data)
@property
def label_tensors(self) -> dict:
if self.labels:
return {organ: torch.from_numpy(self.labels[organ]) for organ in self.organs}
else:
return None
def get_labels(self, label_df: pd.DataFrame) -> dict:
labels = label_df.loc[label_df.id == self.id]
organ2label = dict()
for _, row in labels.iterrows():
organ2label[row["class"]] = self.seg_to_label(row["segmentation"])
return organ2label
# converting run-length encoding to pixel-wise labels
def seg_to_label(self, seg: str):
label = np.zeros(shape=(self.sh, self.sw))
if type(seg) == str:
numbers = seg.split(' ')
assert len(numbers) % 2 == 0
for i in range(0, len(numbers), 2):
start_id = int(numbers[i])
length = int(numbers[i + 1])
for j in range(length):
pixel = start_id + j
px = math.ceil(pixel / self.sw)
py = ((pixel - 1) % self.sw) + 1
label[px, py] = 1
return label
def label_to_seg(self, label):
raise NotImplementedError
def print_image_info(self) -> None:
print(f"Image ID: {self.id}; slice width/height = ({self.sw}, {self.sh}); data shape = {self.data.shape}")
def show_segmented_images(self, segmentations: dict[str, np.ndarray] = None) -> Figure:
if segmentations is None:
segmentations = self.labels
fig, axs = plt.subplots(ncols=len(self.organs), squeeze=False, figsize=(15, 5))
for i, organ in enumerate(self.organs):
axs[0, i].imshow(self.data, cmap="gray")
if self.labels:
axs[0, i].imshow(segmentations[organ], cmap="gray", alpha=0.4)
axs[0, i].set_title(organ)
return fig
class GIImageDataset(Dataset):
def __init__(
self,
image_path: Path,
label_path: Path = None,
cases: set[str] = None
):
if cases:
self._image_paths = self.get_image_files_by_cases(image_path, cases)
else:
self._image_paths = [fpath for fpath in self.image_files_walker(image_path)]
self._label_df = None
if label_path:
self._label_df = pd.read_csv(label_path)
def __len__(self):
return len(self._image_paths)
def __getitem__(self, idx: int):
return GIImage(fpath=self._image_paths[idx], label_df=self._label_df)
@staticmethod
def get_image_files_by_cases(image_path: str, cases: set[str]) -> list:
image_path = Path(image_path)
image_paths = []
for case in os.listdir(image_path):
if case in cases:
case_path = image_path / case
for day in os.listdir(case_path):
day_path = case_path / day / "scans"
for file in os.listdir(day_path):
fpath = day_path / file
image_paths.append(fpath)
return image_paths
@staticmethod
def image_files_walker(image_path: str):
for dirname, _, filenames in os.walk(image_path):
dirpath = Path(dirname)
for filename in filenames:
yield dirpath / filename
def train_valid_split_cases(image_path: str, valid_size: float = 0.2) -> set:
cases = os.listdir(image_path)
valid_cases = set(random.sample(cases, math.ceil(len(cases) * valid_size)))
train_cases = set(cases) - valid_cases
assert ((valid_cases & train_cases) == set()) and ((valid_cases | train_cases) == set(cases))
return train_cases, valid_cases
class GIImageDataLoader(object):
def __init__(
self,
model: nn.Module,
dataset: GIImageDataset,
batch_size: int,
shuffle: bool = True,
input_resolution: int = 572,
padding_mode: str = "reflect"
):
self._model = model
self._dataset = dataset
self._batch_size = batch_size
self._shuffle = shuffle
self._input_resolution = input_resolution
self._output_resolution = get_output_shape(model, input_shape=(1, 1, input_resolution, input_resolution))[-1]
self._padding_mode = padding_mode
def collate_fn(self, images: list[GIImage]):
inputs = list()
labels = list()
for image in images:
padding = ((self._input_resolution - image.sw) // 2, (self._input_resolution - image.sh) // 2)
inputs.append(TF.pad(image.tensor, padding=padding, padding_mode=self._padding_mode).unsqueeze(0))
organs = list()
for organ in GIImage.organs:
organ_label = image.label_tensors[organ]
organ_label = TF.pad(organ_label, padding=padding, padding_mode=self._padding_mode)
organ_label = TF.center_crop(organ_label, output_size=self._output_resolution)
organs.append(organ_label)
labels.append(torch.stack(organs))
return torch.stack(inputs), torch.stack(labels)
def get_data_loader(self) -> DataLoader:
return DataLoader(
dataset=self._dataset,
batch_size=self._batch_size,
shuffle=self._shuffle,
collate_fn=self.collate_fn,
pin_memory=True
)