[226e75]: / main.py

Download this file

305 lines (238 with data), 9.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import argparse
import json
import os
import numpy as np
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
import albumentations as A
from albumentations.pytorch import ToTensor
from common. dataset import MedicalImageDataset as Dataset
from common.logger import Logger
from common.loss import bce_dice_loss, dice_coef_metric,_fast_hist, jaccard_index
from model.Att_Unet import Att_Unet
from common.utils import log_images
def main(config):
makedirs(config)
snapshotargs(config)
device = torch.device("cpu" if not torch.cuda.is_available() else config.device)
loader_train, loader_valid = data_loaders(config)
loaders = {"train": loader_train, "valid": loader_valid}
unet =Att_Unet()
unet.to(device)
best_validation_dsc = 0.0
optimizer = optim.Adam(unet.parameters(), lr=config.lr,weight_decay=1e-5)
lr_scheduler= torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=15, verbose=False)
logger = Logger(config.logs)
loss_train = []
loss_valid = []
step = 0
for epoch in tqdm(range(config.epochs), total=config.epochs):
for phase in ["train", "valid"]:
if phase == "train":
unet.train()
else:
unet.eval()
validation_pred = []
validation_true = []
running_loss = 0.0
for i, data in enumerate(loaders[phase]):
if phase == "train":
step += 1
x, y_true = data
x, y_true = x.to(device), y_true.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == "train"):
y_pred = unet(x)
loss = bce_dice_loss(y_pred, y_true)
if phase == "valid":
loss_valid.append(loss.item())
y_pred_np = y_pred.detach().cpu().numpy()
validation_pred.extend(
[y_pred_np[s] for s in range(y_pred_np.shape[0])]
)
y_true_np = y_true.detach().cpu().numpy()
validation_true.extend(
[y_true_np[s] for s in range(y_true_np.shape[0])]
)
if (epoch % config.vis_freq == 0) or (epoch == config.epochs - 1):
if i * config.batch_size < config.vis_images:
tag = "image/{}".format(i)
num_images = config.vis_images - i * config.batch_size
logger.image_list_summary(
tag,
log_images(x, y_true, y_pred)[:num_images],
step,
)
if phase == "train":
loss_train.append(loss.item())
loss.backward()
optimizer.step()
running_loss += loss.detach() * x.size(0)
if i % 50 == 0:
for param_group in optimizer.param_groups:
print("Current learning rate is: {}".format(param_group['lr']))
if phase == "train" and (step + 1) % 10 == 0:
log_loss_summary(logger, loss_train, step)
loss_train = []
print('Epoch [%d/%d], Loss: %.4f, ' %(epoch+1, config.epochs, running_loss/len(loaders[phase].dataset)))
if phase == "valid":
log_loss_summary(logger, loss_valid, step, prefix="val_")
mean_dsc,mean_iou = compute_metric(unet,loaders[phase])
logger.scalar_summary("val_dsc", mean_dsc, step)
logger.scalar_summary("val_iou", mean_iou, step)
lr_scheduler.step(mean_dsc)
print("\nMean DICE on validation:", mean_dsc)
print("Mean IOU on validation:", mean_iou)
print("..........................................")
if mean_dsc > best_validation_dsc:
best_validation_dsc = mean_dsc
torch.save(unet.state_dict(), os.path.join(config.weights, "unet.pt"))
loss_valid = []
print("Best validation mean DSC: {:4f}".format(best_validation_dsc))
def data_loaders(config):
dataset_train, dataset_valid = datasets(config)
loader_train = DataLoader(
dataset_train,
batch_size=config.batch_size,
num_workers=config.workers
)
loader_valid = DataLoader(
dataset_valid,
batch_size=config.batch_size,
num_workers=config.workers
)
return loader_train, loader_valid
data_transforms = A.Compose ([
A.Resize(width = 256, height = 256, p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.Rotate((-5,5),p=0.5),
A.RandomSunFlare(flare_roi=(0, 0, 1, 0.5), angle_lower=0, angle_upper=1,
num_flare_circles_lower=1, num_flare_circles_upper=2,
src_radius=160, src_color=(255, 255, 255), always_apply=False, p=0.2),
A.RGBShift (r_shift_limit=10, g_shift_limit=10,
b_shift_limit=10, always_apply=False, p=0.2),
A. ElasticTransform (alpha=2, sigma=15, alpha_affine=25, interpolation=1,
border_mode=4, value=None, mask_value=None,
always_apply=False, approximate=False, p=0.2) ,
A.Normalize( p=1.0),
ToTensor(),
])
def datasets(config):
train = Dataset('train', config.root,
transform=data_transforms)
valid = Dataset('val', config.root,
transform=data_transforms)
return train, valid
def compute_metric(model, loader, threshold=0.3):
"""
Computes accuracy on the dataset wrapped in a loader
Returns: accuracy as a float value between 0 and 1
"""
device = torch.device("cpu" if not torch.cuda.is_available() else config.device)
#model.eval()
valloss_one = 0
valloss_two = 0
with torch.no_grad():
for i_step, (data, target) in enumerate(loader):
data = data.to(device)
target = target.to(device)
#prediction = model(x_gpu)
outputs = model(data)
# print("val_output:", outputs.shape)
out_cut = np.copy(outputs.data.cpu().numpy())
out_cut[np.nonzero(out_cut < threshold)] = 0.0
out_cut[np.nonzero(out_cut >= threshold)] = 1.0
hist=_fast_hist(target.data.cpu().numpy(),out_cut,num_classes=2)
picloss = dice_coef_metric(hist)
iouloss,_=jaccard_index(hist)
valloss_one += picloss
valloss_two +=iouloss
return valloss_one / i_step,valloss_two/i_step
def log_loss_summary(logger, loss, step, prefix=""):
logger.scalar_summary(prefix + "loss", np.mean(loss), step)
def makedirs(config):
os.makedirs(config.weights, exist_ok=True)
os.makedirs(config.logs, exist_ok=True)
def snapshotargs(config):
config_file = os.path.join(config.logs, "config.json")
with open(config_file, "w") as fp:
json.dump(vars(config), fp)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Finetuning pretrained Unet"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="input batch size for training (default: 16)",
)
parser.add_argument(
"--epochs",
type=int,
default=100,
help="number of epochs to train (default: 100)",
)
parser.add_argument(
"--lr",
type=float,
default=0.001,
help="initial learning rate (default: 0.001)",
)
parser.add_argument(
"--device",
type=str,
default="cuda:0",
help="device for training (default: cuda:0)",
)
parser.add_argument(
"--workers",
type=int,
default=4,
help="number of workers for data loading (default: 4)",
)
parser.add_argument(
"--vis-images",
type=int,
default=100,
help="number of visualization images to save in log file (default: 200)",
)
parser.add_argument(
"--vis-freq",
type=int,
default=10,
help="frequency of saving images to log file (default: 10)",
)
parser.add_argument(
"--weights", type=str, default="./weights", help="folder to save weights"
)
parser.add_argument(
"--logs", type=str, default="./logs", help="folder to save logs"
)
parser.add_argument(
"--root", type=str, default="./medico2020", help="root folder with images"
)
parser.add_argument(
"--image-size",
type=int,
default=256,
help="target input image size (default: 256)",
)
parser.add_argument(
"--aug-scale",
type=int,
default=0.05,
help="scale factor range for augmentation (default: 0.05)",
)
parser.add_argument(
"--aug-angle",
type=int,
default=6,
help="rotation angle range in degrees for augmentation (default: 15)",
)
config = parser.parse_args()
main(config)