--- a +++ b/test.py @@ -0,0 +1,220 @@ +import argparse +import os + +import numpy as np +import torch + +from skimage.io import imsave +from torch.utils.data import DataLoader +import albumentations as A +from albumentations.pytorch import ToTensor +from torchvision import transforms +from tqdm import tqdm +import cv2 + +from common. dataset import MedicalImageDataset as Dataset +from common.loss import bce_dice_loss, dice_coef_metric +from model.Att_Unet import Att_Unet +from common.utils import log_images, gray2rgb, outline + + +def main(config): + + makedirs(config) + device = torch.device("cpu" if not torch.cuda.is_available() else config.device) + # logger = Logger(config.logs) + loader,dataset = data_loader(config) + + with torch.set_grad_enabled(False): + unet = Att_Unet() + state_dict = torch.load(config.weights, map_location=device) + unet.load_state_dict(state_dict) + unet.eval() + unet.to(device) + + + + input_list = [] + pred_list = [] + #true_list = [] + #loss_test = [] + step=0 + + for i, data in tqdm(enumerate(loader)): + step += 1 + x= data + x= x.to(device) + + y_pred = unet(x) + + #loss = bce_dice_loss(y_pred, y_true) + #loss_test.append(loss.item()) + + y_pred_np = y_pred.detach().cpu().numpy() + pred_list.extend([y_pred_np[s] for s in range(y_pred_np.shape[0])]) + + #y_true_np = y_true.detach().cpu().numpy() + #true_list.extend([y_true_np[s] for s in range(y_true_np.shape[0])]) + + x_np = x.detach().cpu().numpy() + input_list.extend([x_np[s] for s in range(x_np.shape[0])]) + + if config.mask_outline==True: + + for i in range(len(input_list)): + image = gray2rgb(np.squeeze(input_list[i][0,:,:])) + image = outline(image, pred_list[i][0,:,:], color=[255, 0, 0]) + image=image.astype("uint8") + filename="{}.png".format(i) + filepath = os.path.join(config.predictions, filename) + imsave(filepath, image) + + else: + for i in range(len(input_list)): + img_name=dataset.imgs[i].split("/" )[-1:][0] + org_shape=cv2.imread(dataset.imgs[i]).shape + mask=pred_list[i][0,:,:] + mask[np.nonzero(mask<0.3)]=0.0 + mask[np.nonzero(mask>0.3)]=255.0 + mask=mask.astype("uint8") + mask_copy=mask.copy() + mk=cv2.resize(mask,(org_shape[0],org_shape[1]),interpolation = cv2.INTER_AREA) + + + filename="{}".format(img_name) + filepath = os.path.join(config.predictions, filename) + imsave(filepath, mk) + + + + + + + + +def makedirs(config): + os.makedirs(config.predictions, exist_ok=True) + +data_transforms = A.Compose ([ + A.Resize(width = 256, height = 256, p=1.0), + A.Normalize( p=1.0), + ToTensor() +]) + + +def data_loader(config): + dataset = Dataset('test', config.root, + transform=data_transforms + ) + + loader =DataLoader( + dataset, + batch_size=config.batch_size, + num_workers=4 + ) + + return loader,dataset + + + + +""" +def compute_iou(model, loader, threshold=0.3): + + Computes accuracy on the dataset wrapped in a loader + Returns: accuracy as a float value between 0 and 1 + + device = torch.device("cpu" if not torch.cuda.is_available() else config.device) + #model.eval() + valloss = 0 + + with torch.no_grad(): + + for i_step, (data, target) in enumerate(loader): + + data = data.to(device) + target = target.to(device) + + + #prediction = model(x_gpu) + + outputs = model(data) + # print("val_output:", outputs.shape) + + out_cut = np.copy(outputs.data.cpu().numpy()) + out_cut[np.nonzero(out_cut < threshold)] = 0.0 + out_cut[np.nonzero(out_cut >= threshold)] = 1.0 + + picloss = dice_coef_metric(out_cut, target.data.cpu().numpy()) + valloss += picloss + + #print("Threshold: " + str(threshold) + " Validation DICE score:", valloss / i_step) + + return valloss / i_step + +""" + +""" +def log_loss_summary(logger, loss, step, prefix=""): + logger.scalar_summary(prefix + "loss", np.mean(loss), step) +""" + + + +if __name__ == "__main__": + parser = argparse.ArgumentParser( + description="Inference for segmentation of polyps in GI" + ) + parser.add_argument( + "--device", + type=str, + default="cuda:0", + help="device for training (default: cuda:0)", + ) + parser.add_argument( + "--batch-size", + type=int, + default=32, + help="input batch size for training (default: 32)", + ) + parser.add_argument( + "--weights", type=str, default="./weights/unet.pt", required=True, help="path to weights file" + ) + parser.add_argument( + "--root", type=str, default="./medico2020", help="root folder with images" + ) + + parser.add_argument( + "--mask_outline", type=bool, default=False, help="If True ,draws border line of mask else returns binary mask" + ) + parser.add_argument( + "--image-size", + type=int, + default=256, + help="target input image size (default: 256)", + ) + parser.add_argument( + "--predictions", + type=str, + default="./predictions", + help="folder for saving images with prediction outlines", + ) + parser.add_argument( + "--vis-images", + type=int, + default=20, + help="number of visualization images to save in log file (default: 200)", + ) + parser.add_argument( + "--vis-freq", + type=int, + default=10, + help="frequency of saving images to log file (default: 10)", + ) + + parser.add_argument( + "--logs", type=str, default="./test_logs", help="folder to save logs" + ) + + config = parser.parse_args() + main(config)