--- a +++ b/model/Att_Unet.py @@ -0,0 +1,107 @@ + +import torch +import torch.nn as nn + + +class Attention_block(nn.Module): + def __init__(self,F_g,F_l,F_int): + super(Attention_block,self).__init__() + self.W_g = nn.Sequential( + nn.Conv2d(F_g, F_int, kernel_size=1,stride=1,padding=0,bias=True), + nn.BatchNorm2d(F_int) + ) + + self.W_x = nn.Sequential( + nn.Conv2d(F_l, F_int, kernel_size=1,stride=1,padding=0,bias=True), + nn.BatchNorm2d(F_int) + ) + + self.psi = nn.Sequential( + nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True), + nn.BatchNorm2d(1), + nn.Sigmoid() + ) + + self.relu = nn.ReLU(inplace=True) + + def forward(self,g,x): + g1 = self.W_g(g) + x1 = self.W_x(x) + psi = self.relu(g1+x1) + psi = self.psi(psi) + out=x*psi + + return out + + +class Att_Unet(nn.Module): + def __init__(self,output_ch=1): + super(Att_Unet,self).__init__() + + + self.base_model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet', + in_channels=3,out_channels=1, init_features=32, + pretrained=True,verbose=False) + self.base_layers = list(self.base_model.children()) + self.layer0=nn.Sequential(*self.base_layers[0]) + self.layer1=nn.Sequential(*self.base_layers[1:3]) + self.layer2=nn.Sequential(*self.base_layers[3:5]) + self.layer3=nn.Sequential(*self.base_layers[5:7]) + + self.layer4=nn.Sequential(*self.base_layers[7:9]) + + + + self.Up5 = self.base_layers[9] + self.Att5 = Attention_block(F_g=256,F_l=256,F_int=128) + self.Up_conv5 = nn.Sequential(*self.base_layers[10]) + + self.Up4 = self.base_layers[11] + self.Att4 = Attention_block(F_g=128,F_l=128,F_int=64) + self.Up_conv4 =nn.Sequential(*self.base_layers[12]) + + self.Up3 = self.base_layers[13] + self.Att3 = Attention_block(F_g=64,F_l=64,F_int=32) + self.Up_conv3 = nn.Sequential(*self.base_layers[14]) + + self.Up2 = self.base_layers[15] + self.Att2 = Attention_block(F_g=32,F_l=32,F_int=16) + self.Up_conv2 = nn.Sequential(*self.base_layers[16]) + + + self.Conv_1x1 =self.base_layers[17] + + + def forward(self,x): + # encoding path + x1 = self.layer0(x) + x2 = self.layer1(x1) + x3 = self.layer2(x2) + x4 = self.layer3(x3) + + x5 = self.layer4(x4) + + # decoding + concat path + d5 = self.Up5(x5) + x4 = self.Att5(g=d5,x=x4) + d5 = torch.cat((x4,d5),dim=1) + d5 = self.Up_conv5(d5) + + d4 = self.Up4(d5) + x3 = self.Att4(g=d4,x=x3) + d4 = torch.cat((x3,d4),dim=1) + d4 = self.Up_conv4(d4) + + d3 = self.Up3(d4) + x2 = self.Att3(g=d3,x=x2) + d3 = torch.cat((x2,d3),dim=1) + d3 = self.Up_conv3(d3) + + d2 = self.Up2(d3) + x1 = self.Att2(g=d2,x=x1) + d2 = torch.cat((x1,d2),dim=1) + d2 = self.Up_conv2(d2) + + d1 = self.Conv_1x1(d2) + + return d1