Diff of /model/Att_Unet.py [000000] .. [f804b3]

Switch to side-by-side view

--- a
+++ b/model/Att_Unet.py
@@ -0,0 +1,107 @@
+
+import torch
+import torch.nn as nn
+
+
+class Attention_block(nn.Module):
+    def __init__(self,F_g,F_l,F_int):
+        super(Attention_block,self).__init__()
+        self.W_g = nn.Sequential(
+            nn.Conv2d(F_g, F_int, kernel_size=1,stride=1,padding=0,bias=True),
+            nn.BatchNorm2d(F_int)
+            )
+
+        self.W_x = nn.Sequential(
+            nn.Conv2d(F_l, F_int, kernel_size=1,stride=1,padding=0,bias=True),
+            nn.BatchNorm2d(F_int)
+        )
+
+        self.psi = nn.Sequential(
+            nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True),
+            nn.BatchNorm2d(1),
+            nn.Sigmoid()
+        )
+
+        self.relu = nn.ReLU(inplace=True)
+
+    def forward(self,g,x):
+        g1 = self.W_g(g)
+        x1 = self.W_x(x)
+        psi = self.relu(g1+x1)
+        psi = self.psi(psi)
+        out=x*psi
+
+        return out
+
+
+class Att_Unet(nn.Module):
+    def __init__(self,output_ch=1):
+        super(Att_Unet,self).__init__()
+
+
+        self.base_model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet',
+                                         in_channels=3,out_channels=1, init_features=32,
+                                          pretrained=True,verbose=False)
+        self.base_layers = list(self.base_model.children())
+        self.layer0=nn.Sequential(*self.base_layers[0])
+        self.layer1=nn.Sequential(*self.base_layers[1:3])
+        self.layer2=nn.Sequential(*self.base_layers[3:5])
+        self.layer3=nn.Sequential(*self.base_layers[5:7])
+
+        self.layer4=nn.Sequential(*self.base_layers[7:9])
+
+
+
+        self.Up5 = self.base_layers[9]
+        self.Att5 = Attention_block(F_g=256,F_l=256,F_int=128)
+        self.Up_conv5 = nn.Sequential(*self.base_layers[10])
+
+        self.Up4 = self.base_layers[11]
+        self.Att4 = Attention_block(F_g=128,F_l=128,F_int=64)
+        self.Up_conv4 =nn.Sequential(*self.base_layers[12])
+
+        self.Up3 = self.base_layers[13]
+        self.Att3 = Attention_block(F_g=64,F_l=64,F_int=32)
+        self.Up_conv3 = nn.Sequential(*self.base_layers[14])
+
+        self.Up2 = self.base_layers[15]
+        self.Att2 = Attention_block(F_g=32,F_l=32,F_int=16)
+        self.Up_conv2 = nn.Sequential(*self.base_layers[16])
+
+
+        self.Conv_1x1 =self.base_layers[17]
+
+
+    def forward(self,x):
+        # encoding path
+        x1 = self.layer0(x)
+        x2 = self.layer1(x1)
+        x3 = self.layer2(x2)
+        x4 = self.layer3(x3)
+
+        x5 = self.layer4(x4)
+
+        # decoding + concat path
+        d5 = self.Up5(x5)
+        x4 = self.Att5(g=d5,x=x4)
+        d5 = torch.cat((x4,d5),dim=1)
+        d5 = self.Up_conv5(d5)
+
+        d4 = self.Up4(d5)
+        x3 = self.Att4(g=d4,x=x3)
+        d4 = torch.cat((x3,d4),dim=1)
+        d4 = self.Up_conv4(d4)
+
+        d3 = self.Up3(d4)
+        x2 = self.Att3(g=d3,x=x2)
+        d3 = torch.cat((x2,d3),dim=1)
+        d3 = self.Up_conv3(d3)
+
+        d2 = self.Up2(d3)
+        x1 = self.Att2(g=d2,x=x1)
+        d2 = torch.cat((x1,d2),dim=1)
+        d2 = self.Up_conv2(d2)
+
+        d1 = self.Conv_1x1(d2)
+
+        return d1