a b/model/Att_Unet.py
1
2
import torch
3
import torch.nn as nn
4
5
6
class Attention_block(nn.Module):
7
    def __init__(self,F_g,F_l,F_int):
8
        super(Attention_block,self).__init__()
9
        self.W_g = nn.Sequential(
10
            nn.Conv2d(F_g, F_int, kernel_size=1,stride=1,padding=0,bias=True),
11
            nn.BatchNorm2d(F_int)
12
            )
13
14
        self.W_x = nn.Sequential(
15
            nn.Conv2d(F_l, F_int, kernel_size=1,stride=1,padding=0,bias=True),
16
            nn.BatchNorm2d(F_int)
17
        )
18
19
        self.psi = nn.Sequential(
20
            nn.Conv2d(F_int, 1, kernel_size=1,stride=1,padding=0,bias=True),
21
            nn.BatchNorm2d(1),
22
            nn.Sigmoid()
23
        )
24
25
        self.relu = nn.ReLU(inplace=True)
26
27
    def forward(self,g,x):
28
        g1 = self.W_g(g)
29
        x1 = self.W_x(x)
30
        psi = self.relu(g1+x1)
31
        psi = self.psi(psi)
32
        out=x*psi
33
34
        return out
35
36
37
class Att_Unet(nn.Module):
38
    def __init__(self,output_ch=1):
39
        super(Att_Unet,self).__init__()
40
41
42
        self.base_model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet',
43
                                         in_channels=3,out_channels=1, init_features=32,
44
                                          pretrained=True,verbose=False)
45
        self.base_layers = list(self.base_model.children())
46
        self.layer0=nn.Sequential(*self.base_layers[0])
47
        self.layer1=nn.Sequential(*self.base_layers[1:3])
48
        self.layer2=nn.Sequential(*self.base_layers[3:5])
49
        self.layer3=nn.Sequential(*self.base_layers[5:7])
50
51
        self.layer4=nn.Sequential(*self.base_layers[7:9])
52
53
54
55
        self.Up5 = self.base_layers[9]
56
        self.Att5 = Attention_block(F_g=256,F_l=256,F_int=128)
57
        self.Up_conv5 = nn.Sequential(*self.base_layers[10])
58
59
        self.Up4 = self.base_layers[11]
60
        self.Att4 = Attention_block(F_g=128,F_l=128,F_int=64)
61
        self.Up_conv4 =nn.Sequential(*self.base_layers[12])
62
63
        self.Up3 = self.base_layers[13]
64
        self.Att3 = Attention_block(F_g=64,F_l=64,F_int=32)
65
        self.Up_conv3 = nn.Sequential(*self.base_layers[14])
66
67
        self.Up2 = self.base_layers[15]
68
        self.Att2 = Attention_block(F_g=32,F_l=32,F_int=16)
69
        self.Up_conv2 = nn.Sequential(*self.base_layers[16])
70
71
72
        self.Conv_1x1 =self.base_layers[17]
73
74
75
    def forward(self,x):
76
        # encoding path
77
        x1 = self.layer0(x)
78
        x2 = self.layer1(x1)
79
        x3 = self.layer2(x2)
80
        x4 = self.layer3(x3)
81
82
        x5 = self.layer4(x4)
83
84
        # decoding + concat path
85
        d5 = self.Up5(x5)
86
        x4 = self.Att5(g=d5,x=x4)
87
        d5 = torch.cat((x4,d5),dim=1)
88
        d5 = self.Up_conv5(d5)
89
90
        d4 = self.Up4(d5)
91
        x3 = self.Att4(g=d4,x=x3)
92
        d4 = torch.cat((x3,d4),dim=1)
93
        d4 = self.Up_conv4(d4)
94
95
        d3 = self.Up3(d4)
96
        x2 = self.Att3(g=d3,x=x2)
97
        d3 = torch.cat((x2,d3),dim=1)
98
        d3 = self.Up_conv3(d3)
99
100
        d2 = self.Up2(d3)
101
        x1 = self.Att2(g=d2,x=x1)
102
        d2 = torch.cat((x1,d2),dim=1)
103
        d2 = self.Up_conv2(d2)
104
105
        d1 = self.Conv_1x1(d2)
106
107
        return d1