|
a |
|
b/main.py |
|
|
1 |
import argparse |
|
|
2 |
import json |
|
|
3 |
import os |
|
|
4 |
|
|
|
5 |
import numpy as np |
|
|
6 |
import torch |
|
|
7 |
import torch.optim as optim |
|
|
8 |
from torch.utils.data import DataLoader |
|
|
9 |
from torchvision import transforms |
|
|
10 |
from tqdm import tqdm |
|
|
11 |
import albumentations as A |
|
|
12 |
from albumentations.pytorch import ToTensor |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
from common. dataset import MedicalImageDataset as Dataset |
|
|
16 |
from common.logger import Logger |
|
|
17 |
from common.loss import bce_dice_loss, dice_coef_metric,_fast_hist, jaccard_index |
|
|
18 |
from model.Att_Unet import Att_Unet |
|
|
19 |
from common.utils import log_images |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def main(config): |
|
|
23 |
makedirs(config) |
|
|
24 |
snapshotargs(config) |
|
|
25 |
device = torch.device("cpu" if not torch.cuda.is_available() else config.device) |
|
|
26 |
|
|
|
27 |
loader_train, loader_valid = data_loaders(config) |
|
|
28 |
loaders = {"train": loader_train, "valid": loader_valid} |
|
|
29 |
|
|
|
30 |
unet =Att_Unet() |
|
|
31 |
unet.to(device) |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
best_validation_dsc = 0.0 |
|
|
35 |
|
|
|
36 |
optimizer = optim.Adam(unet.parameters(), lr=config.lr,weight_decay=1e-5) |
|
|
37 |
lr_scheduler= torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=15, verbose=False) |
|
|
38 |
|
|
|
39 |
|
|
|
40 |
logger = Logger(config.logs) |
|
|
41 |
loss_train = [] |
|
|
42 |
loss_valid = [] |
|
|
43 |
|
|
|
44 |
step = 0 |
|
|
45 |
|
|
|
46 |
for epoch in tqdm(range(config.epochs), total=config.epochs): |
|
|
47 |
for phase in ["train", "valid"]: |
|
|
48 |
if phase == "train": |
|
|
49 |
unet.train() |
|
|
50 |
else: |
|
|
51 |
unet.eval() |
|
|
52 |
|
|
|
53 |
validation_pred = [] |
|
|
54 |
validation_true = [] |
|
|
55 |
running_loss = 0.0 |
|
|
56 |
|
|
|
57 |
for i, data in enumerate(loaders[phase]): |
|
|
58 |
if phase == "train": |
|
|
59 |
step += 1 |
|
|
60 |
|
|
|
61 |
x, y_true = data |
|
|
62 |
x, y_true = x.to(device), y_true.to(device) |
|
|
63 |
|
|
|
64 |
optimizer.zero_grad() |
|
|
65 |
|
|
|
66 |
with torch.set_grad_enabled(phase == "train"): |
|
|
67 |
y_pred = unet(x) |
|
|
68 |
|
|
|
69 |
loss = bce_dice_loss(y_pred, y_true) |
|
|
70 |
|
|
|
71 |
if phase == "valid": |
|
|
72 |
loss_valid.append(loss.item()) |
|
|
73 |
y_pred_np = y_pred.detach().cpu().numpy() |
|
|
74 |
validation_pred.extend( |
|
|
75 |
[y_pred_np[s] for s in range(y_pred_np.shape[0])] |
|
|
76 |
) |
|
|
77 |
y_true_np = y_true.detach().cpu().numpy() |
|
|
78 |
validation_true.extend( |
|
|
79 |
[y_true_np[s] for s in range(y_true_np.shape[0])] |
|
|
80 |
) |
|
|
81 |
if (epoch % config.vis_freq == 0) or (epoch == config.epochs - 1): |
|
|
82 |
if i * config.batch_size < config.vis_images: |
|
|
83 |
tag = "image/{}".format(i) |
|
|
84 |
num_images = config.vis_images - i * config.batch_size |
|
|
85 |
logger.image_list_summary( |
|
|
86 |
tag, |
|
|
87 |
log_images(x, y_true, y_pred)[:num_images], |
|
|
88 |
step, |
|
|
89 |
) |
|
|
90 |
|
|
|
91 |
if phase == "train": |
|
|
92 |
loss_train.append(loss.item()) |
|
|
93 |
loss.backward() |
|
|
94 |
optimizer.step() |
|
|
95 |
running_loss += loss.detach() * x.size(0) |
|
|
96 |
|
|
|
97 |
if i % 50 == 0: |
|
|
98 |
for param_group in optimizer.param_groups: |
|
|
99 |
print("Current learning rate is: {}".format(param_group['lr'])) |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
if phase == "train" and (step + 1) % 10 == 0: |
|
|
104 |
log_loss_summary(logger, loss_train, step) |
|
|
105 |
loss_train = [] |
|
|
106 |
|
|
|
107 |
print('Epoch [%d/%d], Loss: %.4f, ' %(epoch+1, config.epochs, running_loss/len(loaders[phase].dataset))) |
|
|
108 |
|
|
|
109 |
if phase == "valid": |
|
|
110 |
log_loss_summary(logger, loss_valid, step, prefix="val_") |
|
|
111 |
mean_dsc,mean_iou = compute_metric(unet,loaders[phase]) |
|
|
112 |
logger.scalar_summary("val_dsc", mean_dsc, step) |
|
|
113 |
logger.scalar_summary("val_iou", mean_iou, step) |
|
|
114 |
lr_scheduler.step(mean_dsc) |
|
|
115 |
print("\nMean DICE on validation:", mean_dsc) |
|
|
116 |
print("Mean IOU on validation:", mean_iou) |
|
|
117 |
print("..........................................") |
|
|
118 |
|
|
|
119 |
if mean_dsc > best_validation_dsc: |
|
|
120 |
best_validation_dsc = mean_dsc |
|
|
121 |
torch.save(unet.state_dict(), os.path.join(config.weights, "unet.pt")) |
|
|
122 |
loss_valid = [] |
|
|
123 |
|
|
|
124 |
|
|
|
125 |
|
|
|
126 |
print("Best validation mean DSC: {:4f}".format(best_validation_dsc)) |
|
|
127 |
|
|
|
128 |
|
|
|
129 |
def data_loaders(config): |
|
|
130 |
dataset_train, dataset_valid = datasets(config) |
|
|
131 |
|
|
|
132 |
|
|
|
133 |
|
|
|
134 |
loader_train = DataLoader( |
|
|
135 |
dataset_train, |
|
|
136 |
batch_size=config.batch_size, |
|
|
137 |
num_workers=config.workers |
|
|
138 |
) |
|
|
139 |
loader_valid = DataLoader( |
|
|
140 |
dataset_valid, |
|
|
141 |
batch_size=config.batch_size, |
|
|
142 |
num_workers=config.workers |
|
|
143 |
|
|
|
144 |
) |
|
|
145 |
|
|
|
146 |
return loader_train, loader_valid |
|
|
147 |
|
|
|
148 |
data_transforms = A.Compose ([ |
|
|
149 |
A.Resize(width = 256, height = 256, p=1.0), |
|
|
150 |
A.HorizontalFlip(p=0.5), |
|
|
151 |
A.VerticalFlip(p=0.5), |
|
|
152 |
A.Rotate((-5,5),p=0.5), |
|
|
153 |
A.RandomSunFlare(flare_roi=(0, 0, 1, 0.5), angle_lower=0, angle_upper=1, |
|
|
154 |
num_flare_circles_lower=1, num_flare_circles_upper=2, |
|
|
155 |
src_radius=160, src_color=(255, 255, 255), always_apply=False, p=0.2), |
|
|
156 |
A.RGBShift (r_shift_limit=10, g_shift_limit=10, |
|
|
157 |
b_shift_limit=10, always_apply=False, p=0.2), |
|
|
158 |
A. ElasticTransform (alpha=2, sigma=15, alpha_affine=25, interpolation=1, |
|
|
159 |
border_mode=4, value=None, mask_value=None, |
|
|
160 |
always_apply=False, approximate=False, p=0.2) , |
|
|
161 |
A.Normalize( p=1.0), |
|
|
162 |
ToTensor(), |
|
|
163 |
]) |
|
|
164 |
|
|
|
165 |
|
|
|
166 |
def datasets(config): |
|
|
167 |
train = Dataset('train', config.root, |
|
|
168 |
transform=data_transforms) |
|
|
169 |
|
|
|
170 |
|
|
|
171 |
valid = Dataset('val', config.root, |
|
|
172 |
transform=data_transforms) |
|
|
173 |
|
|
|
174 |
return train, valid |
|
|
175 |
|
|
|
176 |
|
|
|
177 |
def compute_metric(model, loader, threshold=0.3): |
|
|
178 |
""" |
|
|
179 |
Computes accuracy on the dataset wrapped in a loader |
|
|
180 |
|
|
|
181 |
Returns: accuracy as a float value between 0 and 1 |
|
|
182 |
""" |
|
|
183 |
device = torch.device("cpu" if not torch.cuda.is_available() else config.device) |
|
|
184 |
#model.eval() |
|
|
185 |
valloss_one = 0 |
|
|
186 |
valloss_two = 0 |
|
|
187 |
|
|
|
188 |
with torch.no_grad(): |
|
|
189 |
|
|
|
190 |
for i_step, (data, target) in enumerate(loader): |
|
|
191 |
|
|
|
192 |
data = data.to(device) |
|
|
193 |
target = target.to(device) |
|
|
194 |
|
|
|
195 |
|
|
|
196 |
#prediction = model(x_gpu) |
|
|
197 |
|
|
|
198 |
outputs = model(data) |
|
|
199 |
# print("val_output:", outputs.shape) |
|
|
200 |
|
|
|
201 |
out_cut = np.copy(outputs.data.cpu().numpy()) |
|
|
202 |
out_cut[np.nonzero(out_cut < threshold)] = 0.0 |
|
|
203 |
out_cut[np.nonzero(out_cut >= threshold)] = 1.0 |
|
|
204 |
hist=_fast_hist(target.data.cpu().numpy(),out_cut,num_classes=2) |
|
|
205 |
|
|
|
206 |
picloss = dice_coef_metric(hist) |
|
|
207 |
iouloss,_=jaccard_index(hist) |
|
|
208 |
valloss_one += picloss |
|
|
209 |
valloss_two +=iouloss |
|
|
210 |
|
|
|
211 |
|
|
|
212 |
return valloss_one / i_step,valloss_two/i_step |
|
|
213 |
|
|
|
214 |
|
|
|
215 |
def log_loss_summary(logger, loss, step, prefix=""): |
|
|
216 |
logger.scalar_summary(prefix + "loss", np.mean(loss), step) |
|
|
217 |
|
|
|
218 |
|
|
|
219 |
def makedirs(config): |
|
|
220 |
os.makedirs(config.weights, exist_ok=True) |
|
|
221 |
os.makedirs(config.logs, exist_ok=True) |
|
|
222 |
|
|
|
223 |
|
|
|
224 |
def snapshotargs(config): |
|
|
225 |
config_file = os.path.join(config.logs, "config.json") |
|
|
226 |
with open(config_file, "w") as fp: |
|
|
227 |
json.dump(vars(config), fp) |
|
|
228 |
|
|
|
229 |
|
|
|
230 |
if __name__ == "__main__": |
|
|
231 |
parser = argparse.ArgumentParser( |
|
|
232 |
description="Finetuning pretrained Unet" |
|
|
233 |
) |
|
|
234 |
parser.add_argument( |
|
|
235 |
"--batch-size", |
|
|
236 |
type=int, |
|
|
237 |
default=16, |
|
|
238 |
help="input batch size for training (default: 16)", |
|
|
239 |
) |
|
|
240 |
parser.add_argument( |
|
|
241 |
"--epochs", |
|
|
242 |
type=int, |
|
|
243 |
default=100, |
|
|
244 |
help="number of epochs to train (default: 100)", |
|
|
245 |
) |
|
|
246 |
parser.add_argument( |
|
|
247 |
"--lr", |
|
|
248 |
type=float, |
|
|
249 |
default=0.001, |
|
|
250 |
help="initial learning rate (default: 0.001)", |
|
|
251 |
) |
|
|
252 |
parser.add_argument( |
|
|
253 |
"--device", |
|
|
254 |
type=str, |
|
|
255 |
default="cuda:0", |
|
|
256 |
help="device for training (default: cuda:0)", |
|
|
257 |
) |
|
|
258 |
parser.add_argument( |
|
|
259 |
"--workers", |
|
|
260 |
type=int, |
|
|
261 |
default=4, |
|
|
262 |
help="number of workers for data loading (default: 4)", |
|
|
263 |
) |
|
|
264 |
parser.add_argument( |
|
|
265 |
"--vis-images", |
|
|
266 |
type=int, |
|
|
267 |
default=100, |
|
|
268 |
help="number of visualization images to save in log file (default: 200)", |
|
|
269 |
) |
|
|
270 |
parser.add_argument( |
|
|
271 |
"--vis-freq", |
|
|
272 |
type=int, |
|
|
273 |
default=10, |
|
|
274 |
help="frequency of saving images to log file (default: 10)", |
|
|
275 |
) |
|
|
276 |
parser.add_argument( |
|
|
277 |
"--weights", type=str, default="./weights", help="folder to save weights" |
|
|
278 |
) |
|
|
279 |
parser.add_argument( |
|
|
280 |
"--logs", type=str, default="./logs", help="folder to save logs" |
|
|
281 |
) |
|
|
282 |
parser.add_argument( |
|
|
283 |
"--root", type=str, default="./medico2020", help="root folder with images" |
|
|
284 |
) |
|
|
285 |
parser.add_argument( |
|
|
286 |
"--image-size", |
|
|
287 |
type=int, |
|
|
288 |
default=256, |
|
|
289 |
help="target input image size (default: 256)", |
|
|
290 |
) |
|
|
291 |
parser.add_argument( |
|
|
292 |
"--aug-scale", |
|
|
293 |
type=int, |
|
|
294 |
default=0.05, |
|
|
295 |
help="scale factor range for augmentation (default: 0.05)", |
|
|
296 |
) |
|
|
297 |
parser.add_argument( |
|
|
298 |
"--aug-angle", |
|
|
299 |
type=int, |
|
|
300 |
default=6, |
|
|
301 |
help="rotation angle range in degrees for augmentation (default: 15)", |
|
|
302 |
) |
|
|
303 |
config = parser.parse_args() |
|
|
304 |
main(config) |