|
a |
|
b/common/utils.py |
|
|
1 |
import numpy as np |
|
|
2 |
|
|
|
3 |
|
|
|
4 |
|
|
|
5 |
def log_images (x, y_pred, y_true=None, channel=1): |
|
|
6 |
images = [] |
|
|
7 |
x_np = x[:, channel].cpu().numpy() |
|
|
8 |
y_true_np = y_true[:, 0].cpu().numpy() |
|
|
9 |
y_pred_np = y_pred[:, 0].cpu().numpy() |
|
|
10 |
for i in range(x_np.shape[0]): |
|
|
11 |
image = gray2rgb(np.squeeze(x_np[i])) |
|
|
12 |
image = outline(image, y_pred_np[i], color=[255, 0, 0]) |
|
|
13 |
image = outline(image, y_true_np[i], color=[0, 255, 0]) |
|
|
14 |
images.append(image) |
|
|
15 |
return images |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
|
19 |
def gray2rgb(image): |
|
|
20 |
w, h = image.shape |
|
|
21 |
image += np.abs(np.min(image)) |
|
|
22 |
image_max = np.abs(np.max(image)) |
|
|
23 |
if image_max > 0: |
|
|
24 |
image /= image_max |
|
|
25 |
ret = np.empty((w, h, 3), dtype=np.uint8) |
|
|
26 |
ret[:, :, 2] = ret[:, :, 1] = ret[:, :, 0] = image * 255 |
|
|
27 |
return ret |
|
|
28 |
|
|
|
29 |
|
|
|
30 |
def outline(image, mask, color): |
|
|
31 |
mask = np.round(mask) |
|
|
32 |
yy, xx = np.nonzero(mask) |
|
|
33 |
for y, x in zip(yy, xx): |
|
|
34 |
if 0.0 < np.mean(mask[max(0, y - 1) : y + 2, max(0, x - 1) : x + 2]) < 1.0: |
|
|
35 |
image[max(0, y) : y + 1, max(0, x) : x + 1] = color |
|
|
36 |
return image |