[8eeb5a]: / training / train_inpainter.py

Download this file

171 lines (143 with data), 6.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts
from torch.utils.data import DataLoader
from data.hyperkvasir import KvasirInpaintingDataset
from models.inpainters import SegGenerator, SegDiscriminator
from perturbation.polyp_inpainter import Inpainter
# TODO refactor
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def train_new_inpainter():
# Loss function
adversarial_loss = torch.nn.BCELoss()
pixelwise_loss = torch.nn.L1Loss()
# Initialize generator and discriminator
# generator = Generator(channels=3)
# discriminator = Discriminator(channels=3)
generator = SegGenerator()
discriminator = SegDiscriminator()
generator.load_state_dict(torch.load("Predictors/Inpainters/no-pretrain-deeplab-generator-940"))
discriminator.load_state_dict(torch.load("Predictors/Inpainters/no-pretrain-deeplab-discriminator-940"))
cuda = True
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
pixelwise_loss.cuda()
# Dataset loader TODO refactor w/ albumentation library
transforms_ = [
transforms.Resize((400, 400), Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
dataloader = DataLoader(
KvasirInpaintingDataset("Datasets/HyperKvasir"),
batch_size=8,
shuffle=False,
num_workers=1,
)
# test_dataloader = DataLoader(
# EtisDataset("Datasets/ETIS-LaribPolypDB"),
# batch_size=12,
# shuffle=True,
# num_workers=1,
# )
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0001)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.00001)
scheduler_G = CosineAnnealingWarmRestarts(optimizer_G, T_0=100, T_mult=2)
scheduler_D = CosineAnnealingWarmRestarts(optimizer_D, T_0=100, T_mult=2)
# Initialize weights
# generator.apply(weights_init_normal)
# discriminator.apply(weights_init_normal)
# patch_h, patch_w = int(50 / 2 ** 3), int(50 / 2 ** 3)
# patch = (1, patch_h, patch_w)
# print(patch)
for epoch in range(990, 5000):
printed = False
d_losses = []
g_advs = []
g_pixels = []
for i, (imgs, mask, masked_imgs, masked_parts, filename) in enumerate(dataloader):
imgs = imgs.cuda()
mask = mask.cuda()
masked_imgs = masked_imgs.cuda()
masked_parts = masked_parts.cuda()
mask_bool = mask == 1
# Adversarial ground truths (boxes)
# valid = Variable(torch.Tensor(imgs.shape[0], *patch).fill_(1.0), requires_grad=False)
# fake = Variable(torch.Tensor(imgs.shape[0], *patch).fill_(0.0), requires_grad=False)
valid = torch.masked_select(torch.ones_like(mask), mask_bool)
fake = torch.masked_select(torch.zeros_like(mask), mask_bool)
# Configure input
imgs = Variable(imgs)
masked_imgs = Variable(masked_imgs)
masked_parts = Variable(masked_parts)
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Generate a batch of images
gen_parts = generator(masked_imgs)
# Adversarial and pixelwise loss
disc = discriminator(gen_parts)
# print(disc)
g_adv = adversarial_loss(torch.masked_select(disc, mask_bool), valid)
g_pixel = pixelwise_loss(torch.masked_select(gen_parts, mask_bool), torch.masked_select(imgs, mask_bool))
g_advs.append(g_adv.item())
g_pixels.append(g_pixel.item())
# Total loss
g_loss = 0.001 * g_adv + 0.999 * g_pixel
g_loss.backward()
optimizer_G.step()
scheduler_G.step(epoch)
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Measure discriminator's ability to classify real from generated samples
real_loss = adversarial_loss(torch.masked_select(discriminator(masked_parts), mask_bool), valid)
fake_loss = adversarial_loss(torch.masked_select(discriminator(gen_parts.detach()), mask_bool), fake)
d_loss = 0.5 * (real_loss + fake_loss)
d_losses.append(d_loss.item())
# wasserstein critic loss
# d_loss = -torch.mean(discriminator(masked_parts)) + torch.mean(discriminator(gen_parts.detach()))
d_loss.backward()
optimizer_D.step()
scheduler_D.step(epoch)
if not printed and epoch % 10 == 0:
torch.save(generator.state_dict(), f"Predictors/Inpainters/no-pretrain-deeplab-generator-{epoch}")
torch.save(discriminator.state_dict(),
f"Predictors/Inpainters/no-pretrain-deeplab-discriminator-{epoch}")
plt.title("Part")
plt.imshow((gen_parts[0].detach().cpu().numpy().T))
plt.show()
# plt.title("Superimposed")
# plt.imshow((gen_parts[0].detach().cpu().numpy().T))
# plt.imshow(masked_imgs[0].detach().cpu().numpy().T)
# plt.show()
# plt.title("Real")
# plt.imshow(masked_parts[0].detach().cpu().numpy().T)
# plt.show()
try:
test = Inpainter(f"Predictors/Inpainters/no-pretrain-deeplab-generator-{epoch}")
test.get_test()
except FileNotFoundError:
print("Weird...")
printed = True
print(
f"[Epoch {epoch}] [D loss: {np.mean(d_losses)}] [G adv: {np.mean(g_advs)}, pixel: {np.mean(g_pixels)}]"
)
if __name__ == '__main__':
train_new_inpainter()