[8eeb5a]: / training / consistency_trainers.py

Download this file

231 lines (200 with data), 9.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import matplotlib.pyplot as plt
import numpy as np
import torch.optim.optimizer
from torch.utils.data import DataLoader
from tqdm import tqdm
from data.hyperkvasir import KvasirSegmentationDataset, KvasirMNVset
from evaluation.metrics import iou
from losses.consistency_losses import *
from perturbation.model import ModelOfNaturalVariation
from training.vanilla_trainer import VanillaTrainer
from utils import logging
from models.ensembles import TrainedEnsemble
class ConsistencyTrainer(VanillaTrainer):
def __init__(self, id, config):
super(ConsistencyTrainer, self).__init__(id, config)
self.criterion = ConsistencyLoss().to(self.device)
self.nakedcloss = NakedConsistencyLoss()
def train_epoch(self):
self.model.train()
losses = []
for x, y, fname in self.train_loader:
image = x.to("cuda")
mask = y.to("cuda")
aug_img, aug_mask = self.mnv(image, mask)
self.optimizer.zero_grad()
output = self.model(image)
aug_output = self.model(aug_img)
mean_iou = torch.mean(iou(output, mask))
loss = self.criterion(aug_mask, mask, aug_output, output, mean_iou)
loss.backward()
self.optimizer.step()
losses.append(np.abs(loss.item()))
return np.mean(losses)
def train(self):
best_val_loss = 1000
best_consistency = 0
print("Starting Segmentation training")
for i in range(self.epochs):
training_loss = np.abs(self.train_epoch())
val_loss, ious, closs = self.validate(epoch=i, plot=False)
gen_ious = self.validate_generalizability(epoch=i, plot=False)
mean_iou = float(torch.mean(ious))
gen_iou = float(torch.mean(gen_ious))
consistency = 1 - np.mean(closs)
test_iou = np.mean(self.test().numpy())
self.config["lr"] = [group['lr'] for group in self.optimizer.param_groups]
logging.log_full(epoch=i, id=self.id, config=self.config, result_dict=
{"train_loss": training_loss, "val_loss": val_loss,
"iid_val_iou": mean_iou, "iid_test_iou": test_iou, "ood_iou": gen_iou,
"consistency": consistency}, type="consistency")
self.scheduler.step(i)
# self.mnv.step()
print(
f"Epoch {i} of {self.epochs} \t"
f" lr={[group['lr'] for group in self.optimizer.param_groups]} \t"
f" loss={training_loss} \t"
f" val_loss={val_loss} \t"
f" ood_iou={gen_iou}\t"
f" val_iou={mean_iou} \t"
f" gen_prop={gen_iou / mean_iou} \t,"
f" consistency={consistency}"
)
if val_loss < best_val_loss:
best_val_loss = val_loss
np.save(
f"experiments/Data/Augmented-Pipelines/{self.model_str}/{self.id}",
test_iou)
print(f"Saving new best model. IID test-set mean iou: {test_iou}")
torch.save(self.model.state_dict(),
f"Predictors/Augmented/{self.model_str}/{self.id}")
print("saved in: ", f"Predictors/Augmented/{self.model_str}/{self.id}")
if consistency > best_consistency:
best_consistency = consistency
torch.save(self.model.state_dict(),
f"Predictors/Augmented/{self.model_str}/maximum_consistency{self.id}")
torch.save(self.model.state_dict(),
f"Predictors/Augmented/{self.model_str}/{self.id}_last_epoch")
def test(self):
self.model.eval()
ious = torch.empty((0,))
with torch.no_grad():
for x, y, fname in self.test_loader:
image = x.to("cuda")
mask = y.to("cuda")
output = self.model(image)
batch_ious = torch.Tensor([iou(output_i, mask_j) for output_i, mask_j in zip(output, mask)])
ious = torch.cat((ious, batch_ious.flatten()))
return ious
class ConsistencyTrainerUsingAugmentation(ConsistencyTrainer):
"""
Uses vanilla data augmentation with p=0.5 instead of a a custom loss
"""
def __init__(self, id, config):
super(ConsistencyTrainerUsingAugmentation, self).__init__(id, config)
self.jaccard = vanilla_losses.JaccardLoss()
self.prob = 0
self.dataset = KvasirMNVset("Datasets/HyperKvasir", "train", inpaint=config["use_inpainter"])
self.train_loader = DataLoader(self.dataset, batch_size=config["batch_size"], shuffle=True)
def get_iou_weights(self, image, mask):
self.model.eval()
with torch.no_grad():
output = self.model(image)
return torch.mean(iou(output, mask))
def get_consistency(self, image, mask, augmented, augmask):
self.model.eval()
with torch.no_grad():
output = self.model(image)
self.model.train()
return torch.mean(self.nakedcloss(output, mask, augmented, augmask))
def train_epoch(self):
self.model.train()
losses = []
plotted = False
for x, y, fname, flag in self.train_loader:
image = x.to("cuda")
mask = y.to("cuda")
self.optimizer.zero_grad()
output = self.model(image)
loss = self.jaccard(output, mask)
loss.backward()
self.optimizer.step()
losses.append(np.abs(loss.item()))
return np.mean(losses)
class AdversarialConsistencyTrainer(ConsistencyTrainer):
"""
Adversariall samples difficult
"""
def __init__(self, id, config):
super(ConsistencyTrainer, self).__init__(id, config)
self.mnv = ModelOfNaturalVariation(T0=1).to(self.device)
self.num_adv_samples = 10
self.naked_closs = NakedConsistencyLoss()
self.criterion = ConsistencyLoss().to(self.device)
def sample_adversarial(self, image, mask, output):
self.model.eval()
aug_img, aug_mask = None, None #
max_severity = -10
with torch.no_grad():
for i in range(self.num_adv_samples):
adv_aug_img, adv_aug_mask = self.mnv(image, mask)
adv_aug_output = self.model(adv_aug_img)
severity = self.naked_closs(adv_aug_mask, mask, adv_aug_output, output)
if severity > max_severity:
max_severity = severity
aug_img = adv_aug_img
aug_mask = adv_aug_mask
self.model.train()
return aug_img, aug_mask
def train_epoch(self):
self.model.train()
losses = []
for x, y, fname in self.train_loader:
image = x.to("cuda")
mask = y.to("cuda")
self.optimizer.zero_grad()
output = self.model(image)
aug_img, aug_mask = self.sample_adversarial(image, mask, output)
# aug_img, aug_mask = self.mnv(image, mask)
aug_output = self.model(aug_img)
mean_iou = torch.mean(iou(output, mask))
loss = self.criterion(aug_mask, mask, aug_output, output, mean_iou)
loss.backward()
self.optimizer.step()
losses.append(np.abs(loss.item()))
return np.mean(losses)
class StrictConsistencyTrainer(ConsistencyTrainer):
def __init__(self, id, config):
super(StrictConsistencyTrainer, self).__init__(id, config)
self.criterion = StrictConsistencyLoss()
class ConsistencyTrainerUsingControlledAugmentation(ConsistencyTrainer):
"""
Uses vanilla data augmentation with p=0.5 instead of a a custom loss and has two samples
"""
def __init__(self, id, config):
super(ConsistencyTrainerUsingControlledAugmentation, self).__init__(id, config)
self.jaccard = vanilla_losses.JaccardLoss()
self.mnv = ModelOfNaturalVariation(1)
def train_epoch(self):
self.model.train()
losses = []
plotted = False
for x, y, fname in self.train_loader:
image = x.to("cuda")
mask = y.to("cuda")
aug_img, aug_mask = self.mnv(image, mask)
img_batch = torch.cat((image, aug_img))
mask_batch = torch.cat((mask, aug_mask))
self.optimizer.zero_grad()
output = self.model(img_batch)
loss = self.jaccard(output, mask_batch)
loss.backward()
self.optimizer.step()
losses.append(np.abs(loss.item()))
return np.mean(losses)
class EnsembleConsistencyTrainer(ConsistencyTrainer):
def __init__(self, id, config):
super(EnsembleConsistencyTrainer, self).__init__(id, config)
self.model = TrainedEnsemble("Singular")
self.optimizer = torch.optim.Adam(self.model.parameters(), self.lr)
self.scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer, T_0=50, T_mult=2)