import argparse
import os
import time
class TrainOptions:
def __init__(self):
self.parser = argparse.ArgumentParser()
self.initialized = False
def initialize(self):
# experiment specifics
self.parser.add_argument('--dataset', type=str, default='paris_streetview',
help='dataset of the experiment.')
self.parser.add_argument('--data_file', type=str, default='', help='the file storing training image paths')
self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2')
self.parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints', help='models are saved here')
self.parser.add_argument('--load_model_dir', type=str, default='', help='pretrained models are given here')
self.parser.add_argument('--phase', type=str, default='train')
# input/output sizes
self.parser.add_argument('--batch_size', type=int, default=16, help='input batch size')
# for setting inputs
self.parser.add_argument('--random_crop', type=int, default=1,
help='using random crop to process input image when '
'the required size is smaller than the given size')
self.parser.add_argument('--random_mask', type=int, default=1)
self.parser.add_argument('--mask_type', type=str, default='rect')
self.parser.add_argument('--pretrain_network', type=int, default=0)
self.parser.add_argument('--lambda_adv', type=float, default=1e-3)
self.parser.add_argument('--lambda_rec', type=float, default=1.4)
self.parser.add_argument('--lambda_ae', type=float, default=1.2)
self.parser.add_argument('--lambda_mrf', type=float, default=0.05)
self.parser.add_argument('--lambda_gp', type=float, default=10)
self.parser.add_argument('--random_seed', type=bool, default=False)
self.parser.add_argument('--padding', type=str, default='SAME')
self.parser.add_argument('--D_max_iters', type=int, default=5)
self.parser.add_argument('--lr', type=float, default=1e-5, help='learning rate for training')
self.parser.add_argument('--train_spe', type=int, default=1000)
self.parser.add_argument('--epochs', type=int, default=40)
self.parser.add_argument('--viz_steps', type=int, default=5)
self.parser.add_argument('--spectral_norm', type=int, default=1)
self.parser.add_argument('--img_shapes', type=str, default='256,256,3',
help='given shape parameters: h,w,c or h,w')
self.parser.add_argument('--mask_shapes', type=str, default='128,128',
help='given mask parameters: h,w')
self.parser.add_argument('--max_delta_shapes', type=str, default='32,32')
self.parser.add_argument('--margins', type=str, default='0,0')
# for generator
self.parser.add_argument('--g_cnum', type=int, default=32,
help='# of generator filters in first conv layer')
self.parser.add_argument('--d_cnum', type=int, default=64,
help='# of discriminator filters in first conv layer')
# for id-mrf computation
self.parser.add_argument('--vgg19_path', type=str, default='vgg19_weights/imagenet-vgg-verydeep-19.mat')
# for instance-wise features
self.initialized = True
def parse(self):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
self.opt.dataset_path = self.opt.data_file
str_ids = self.opt.gpu_ids.split(',')
self.opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
self.opt.gpu_ids.append(str(id))
assert self.opt.random_crop in [0, 1]
self.opt.random_crop = True if self.opt.random_crop == 1 else False
assert self.opt.random_mask in [0, 1]
self.opt.random_mask = True if self.opt.random_mask == 1 else False
assert self.opt.pretrain_network in [0, 1]
self.opt.pretrain_network = True if self.opt.pretrain_network == 1 else False
assert self.opt.spectral_norm in [0, 1]
self.opt.spectral_norm = True if self.opt.spectral_norm == 1 else False
assert self.opt.padding in ['SAME', 'MIRROR']
assert self.opt.mask_type in ['rect', 'stroke']
str_img_shapes = self.opt.img_shapes.split(',')
self.opt.img_shapes = [int(x) for x in str_img_shapes]
str_mask_shapes = self.opt.mask_shapes.split(',')
self.opt.mask_shapes = [int(x) for x in str_mask_shapes]
str_max_delta_shapes = self.opt.max_delta_shapes.split(',')
self.opt.max_delta_shapes = [int(x) for x in str_max_delta_shapes]
str_margins = self.opt.margins.split(',')
self.opt.margins = [int(x) for x in str_margins]
# model name and date
self.opt.date_str = time.strftime('%Y%m%d-%H%M%S')
self.opt.model_name = 'GMCNN'
self.opt.model_folder = self.opt.date_str + '_' + self.opt.model_name
self.opt.model_folder += '_' + self.opt.dataset
self.opt.model_folder += '_b' + str(self.opt.batch_size)
self.opt.model_folder += '_s' + str(self.opt.img_shapes[0]) + 'x' + str(self.opt.img_shapes[1])
self.opt.model_folder += '_gc' + str(self.opt.g_cnum)
self.opt.model_folder += '_dc' + str(self.opt.d_cnum)
self.opt.model_folder += '_randmask-' + self.opt.mask_type if self.opt.random_mask else ''
self.opt.model_folder += '_pretrain' if self.opt.pretrain_network else ''
if os.path.isdir(self.opt.checkpoint_dir) is False:
os.mkdir(self.opt.checkpoint_dir)
self.opt.model_folder = os.path.join(self.opt.checkpoint_dir, self.opt.model_folder)
if os.path.isdir(self.opt.model_folder) is False:
os.mkdir(self.opt.model_folder)
# set gpu ids
if len(self.opt.gpu_ids) > 0:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(self.opt.gpu_ids)
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
return self.opt