import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.nn.functional as F
from model.layer import VGG19FeatLayer
from functools import reduce
class WGANLoss(nn.Module):
def __init__(self):
super(WGANLoss, self).__init__()
def __call__(self, input, target):
d_loss = (input - target).mean()
g_loss = -input.mean()
return {'g_loss': g_loss, 'd_loss': d_loss}
def gradient_penalty(xin, yout, mask=None):
gradients = autograd.grad(yout, xin, create_graph=True,
grad_outputs=torch.ones(yout.size()).cuda(), retain_graph=True, only_inputs=True)[0]
if mask is not None:
gradients = gradients * mask
gradients = gradients.view(gradients.size(0), -1)
gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gp
def random_interpolate(gt, pred):
batch_size = gt.size(0)
alpha = torch.rand(batch_size, 1, 1, 1).cuda()
# alpha = alpha.expand(gt.size()).cuda()
interpolated = gt * alpha + pred * (1 - alpha)
return interpolated
class IDMRFLoss(nn.Module):
def __init__(self, featlayer=VGG19FeatLayer):
super(IDMRFLoss, self).__init__()
self.featlayer = featlayer()
self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
self.feat_content_layers = {'relu4_2': 1.0}
self.bias = 1.0
self.nn_stretch_sigma = 0.5
self.lambda_style = 1.0
self.lambda_content = 1.0
def sum_normalize(self, featmaps):
reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
return featmaps / reduce_sum
def patch_extraction(self, featmaps):
patch_size = 1
patch_stride = 1
patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(3, patch_size, patch_stride)
self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
dims = self.patches_OIHW.size()
self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
return self.patches_OIHW
def compute_relative_distances(self, cdist):
epsilon = 1e-5
div = torch.min(cdist, dim=1, keepdim=True)[0]
relative_dist = cdist / (div + epsilon)
return relative_dist
def exp_norm_relative_dist(self, relative_dist):
scaled_dist = relative_dist
dist_before_norm = torch.exp((self.bias - scaled_dist)/self.nn_stretch_sigma)
self.cs_NCHW = self.sum_normalize(dist_before_norm)
return self.cs_NCHW
def mrf_loss(self, gen, tar):
meanT = torch.mean(tar, 1, keepdim=True)
gen_feats, tar_feats = gen - meanT, tar - meanT
gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)
gen_normalized = gen_feats / gen_feats_norm
tar_normalized = tar_feats / tar_feats_norm
cosine_dist_l = []
BatchSize = tar.size(0)
for i in range(BatchSize):
tar_feat_i = tar_normalized[i:i+1, :, :, :]
gen_feat_i = gen_normalized[i:i+1, :, :, :]
patches_OIHW = self.patch_extraction(tar_feat_i)
cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
cosine_dist_l.append(cosine_dist_i)
cosine_dist = torch.cat(cosine_dist_l, dim=0)
cosine_dist_zero_2_one = - (cosine_dist - 1) / 2
relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
rela_dist = self.exp_norm_relative_dist(relative_dist)
dims_div_mrf = rela_dist.size()
k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
div_mrf = torch.mean(k_max_nc, dim=1)
div_mrf_sum = -torch.log(div_mrf)
div_mrf_sum = torch.sum(div_mrf_sum)
return div_mrf_sum
def forward(self, gen, tar):
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
style_loss_list = [self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers]
self.style_loss = reduce(lambda x, y: x+y, style_loss_list) * self.lambda_style
content_loss_list = [self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers]
self.content_loss = reduce(lambda x, y: x+y, content_loss_list) * self.lambda_content
return self.style_loss + self.content_loss
class StyleLoss(nn.Module):
def __init__(self, featlayer=VGG19FeatLayer, style_layers=None):
super(StyleLoss, self).__init__()
self.featlayer = featlayer()
if style_layers is not None:
self.feat_style_layers = style_layers
else:
self.feat_style_layers = {'relu2_2': 1.0, 'relu3_2': 1.0, 'relu4_2': 1.0}
def gram_matrix(self, x):
b, c, h, w = x.size()
feats = x.view(b * c, h * w)
g = torch.mm(feats, feats.t())
return g.div(b * c * h * w)
def _l1loss(self, gen, tar):
return torch.abs(gen-tar).mean()
def forward(self, gen, tar):
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
style_loss_list = [self.feat_style_layers[layer] * self._l1loss(self.gram_matrix(gen_vgg_feats[layer]), self.gram_matrix(tar_vgg_feats[layer])) for
layer in self.feat_style_layers]
style_loss = reduce(lambda x, y: x + y, style_loss_list)
return style_loss
class ContentLoss(nn.Module):
def __init__(self, featlayer=VGG19FeatLayer, content_layers=None):
super(ContentLoss, self).__init__()
self.featlayer = featlayer()
if content_layers is not None:
self.feat_content_layers = content_layers
else:
self.feat_content_layers = {'relu4_2': 1.0}
def _l1loss(self, gen, tar):
return torch.abs(gen-tar).mean()
def forward(self, gen, tar):
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
content_loss_list = [self.feat_content_layers[layer] * self._l1loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for
layer in self.feat_content_layers]
content_loss = reduce(lambda x, y: x + y, content_loss_list)
return content_loss
class TVLoss(nn.Module):
def __init__(self):
super(TVLoss, self).__init__()
def forward(self, x):
h_x, w_x = x.size()[2:]
h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :h_x-1, :])
w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :w_x-1])
loss = torch.sum(h_tv) + torch.sum(w_tv)
return loss