[8eeb5a]: / inpainting / model / loss.py

Download this file

174 lines (139 with data), 6.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.nn.functional as F
from model.layer import VGG19FeatLayer
from functools import reduce
class WGANLoss(nn.Module):
def __init__(self):
super(WGANLoss, self).__init__()
def __call__(self, input, target):
d_loss = (input - target).mean()
g_loss = -input.mean()
return {'g_loss': g_loss, 'd_loss': d_loss}
def gradient_penalty(xin, yout, mask=None):
gradients = autograd.grad(yout, xin, create_graph=True,
grad_outputs=torch.ones(yout.size()).cuda(), retain_graph=True, only_inputs=True)[0]
if mask is not None:
gradients = gradients * mask
gradients = gradients.view(gradients.size(0), -1)
gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
return gp
def random_interpolate(gt, pred):
batch_size = gt.size(0)
alpha = torch.rand(batch_size, 1, 1, 1).cuda()
# alpha = alpha.expand(gt.size()).cuda()
interpolated = gt * alpha + pred * (1 - alpha)
return interpolated
class IDMRFLoss(nn.Module):
def __init__(self, featlayer=VGG19FeatLayer):
super(IDMRFLoss, self).__init__()
self.featlayer = featlayer()
self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
self.feat_content_layers = {'relu4_2': 1.0}
self.bias = 1.0
self.nn_stretch_sigma = 0.5
self.lambda_style = 1.0
self.lambda_content = 1.0
def sum_normalize(self, featmaps):
reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
return featmaps / reduce_sum
def patch_extraction(self, featmaps):
patch_size = 1
patch_stride = 1
patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(3, patch_size, patch_stride)
self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
dims = self.patches_OIHW.size()
self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
return self.patches_OIHW
def compute_relative_distances(self, cdist):
epsilon = 1e-5
div = torch.min(cdist, dim=1, keepdim=True)[0]
relative_dist = cdist / (div + epsilon)
return relative_dist
def exp_norm_relative_dist(self, relative_dist):
scaled_dist = relative_dist
dist_before_norm = torch.exp((self.bias - scaled_dist)/self.nn_stretch_sigma)
self.cs_NCHW = self.sum_normalize(dist_before_norm)
return self.cs_NCHW
def mrf_loss(self, gen, tar):
meanT = torch.mean(tar, 1, keepdim=True)
gen_feats, tar_feats = gen - meanT, tar - meanT
gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)
gen_normalized = gen_feats / gen_feats_norm
tar_normalized = tar_feats / tar_feats_norm
cosine_dist_l = []
BatchSize = tar.size(0)
for i in range(BatchSize):
tar_feat_i = tar_normalized[i:i+1, :, :, :]
gen_feat_i = gen_normalized[i:i+1, :, :, :]
patches_OIHW = self.patch_extraction(tar_feat_i)
cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
cosine_dist_l.append(cosine_dist_i)
cosine_dist = torch.cat(cosine_dist_l, dim=0)
cosine_dist_zero_2_one = - (cosine_dist - 1) / 2
relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
rela_dist = self.exp_norm_relative_dist(relative_dist)
dims_div_mrf = rela_dist.size()
k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
div_mrf = torch.mean(k_max_nc, dim=1)
div_mrf_sum = -torch.log(div_mrf)
div_mrf_sum = torch.sum(div_mrf_sum)
return div_mrf_sum
def forward(self, gen, tar):
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
style_loss_list = [self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers]
self.style_loss = reduce(lambda x, y: x+y, style_loss_list) * self.lambda_style
content_loss_list = [self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers]
self.content_loss = reduce(lambda x, y: x+y, content_loss_list) * self.lambda_content
return self.style_loss + self.content_loss
class StyleLoss(nn.Module):
def __init__(self, featlayer=VGG19FeatLayer, style_layers=None):
super(StyleLoss, self).__init__()
self.featlayer = featlayer()
if style_layers is not None:
self.feat_style_layers = style_layers
else:
self.feat_style_layers = {'relu2_2': 1.0, 'relu3_2': 1.0, 'relu4_2': 1.0}
def gram_matrix(self, x):
b, c, h, w = x.size()
feats = x.view(b * c, h * w)
g = torch.mm(feats, feats.t())
return g.div(b * c * h * w)
def _l1loss(self, gen, tar):
return torch.abs(gen-tar).mean()
def forward(self, gen, tar):
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
style_loss_list = [self.feat_style_layers[layer] * self._l1loss(self.gram_matrix(gen_vgg_feats[layer]), self.gram_matrix(tar_vgg_feats[layer])) for
layer in self.feat_style_layers]
style_loss = reduce(lambda x, y: x + y, style_loss_list)
return style_loss
class ContentLoss(nn.Module):
def __init__(self, featlayer=VGG19FeatLayer, content_layers=None):
super(ContentLoss, self).__init__()
self.featlayer = featlayer()
if content_layers is not None:
self.feat_content_layers = content_layers
else:
self.feat_content_layers = {'relu4_2': 1.0}
def _l1loss(self, gen, tar):
return torch.abs(gen-tar).mean()
def forward(self, gen, tar):
gen_vgg_feats = self.featlayer(gen)
tar_vgg_feats = self.featlayer(tar)
content_loss_list = [self.feat_content_layers[layer] * self._l1loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for
layer in self.feat_content_layers]
content_loss = reduce(lambda x, y: x + y, content_loss_list)
return content_loss
class TVLoss(nn.Module):
def __init__(self):
super(TVLoss, self).__init__()
def forward(self, x):
h_x, w_x = x.size()[2:]
h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :h_x-1, :])
w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :w_x-1])
loss = torch.sum(h_tv) + torch.sum(w_tv)
return loss