[8eeb5a]: / experiments / train_augmented_pipeline.py

Download this file

52 lines (48 with data), 1.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from training.consistency_trainers import *
from training.inductivenet_trainers import InductiveNetConsistencyTrainer, InductiveNetEnsembleTrainer
import sys
if __name__ == '__main__':
id = sys.argv[1]
model = sys.argv[2]
config = {"model": model,
"device": "cuda",
"lr": 0.00001,
"batch_size": 8,
"epochs": 250,
"use_inpainter": False}
trainer = ConsistencyTrainer(id, config)
trainer.train()
# config = {"model": "FPN",
# "device": "cuda",
# "lr": 0.00001,
# "batch_size": 8,
# "epochs": 250,
# "use_inpainter": False}
# trainer = ConsistencyTrainer(id=f"{sys.argv[1]}", config=config)
# trainer.train()
# config = {"model": "Unet",
# "device": "cuda",
# "lr": 0.00001,
# "batch_size": 8,
# "epochs": 250,
# "use_inpainter": False}
# trainer = StrictConsistencyTrainer(id=f"dual_jaccard-{sys.argv[1]}", config=config)
# trainer.train()
# trainer = ConsistencyTrainerUsingAugmentation(id=f"augmentation-{sys.argv[1]}", config=config)
# trainer.train()
# config = {"model": "Unet",
# "device": "cuda",
# "lr": 0.00001,
# "batch_size": 8,
# "epochs": 250,
# "use_inpainter": False}
# trainer = ConsistencyTrainerUsingControlledAugmentation("aug_test", config)
# trainer.train()
# config = {"model": "Unet",
# "device": "cuda",
# "lr": 0.00001,
# "batch_size": 8,
# "epochs": 250,
# "use_inpainter": False}
# trainer = AdversarialConsistencyTrainer(id=f"adversarial-{sys.argv[1]}", config=config)
# trainer.train()