[8eeb5a]: / experiments / plotting.py

Download this file

900 lines (790 with data), 42.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import pickle
from utils.formatting import SafeDict
from scipy.stats import wasserstein_distance
from scipy.stats import ttest_ind, pearsonr, mannwhitneyu, spearmanr
from models.segmentation_models import *
def training_plot(log_csv):
log_df = pd.read_csv(log_csv)
plt.title("Training Plot Sample")
plt.xlabel("Epochs")
plt.ylabel("Jaccard Loss")
plt.xlim((0, 300))
plt.ylim((0, 1))
plt.plot(log_df["epoch"], log_df["train_loss"], label="Training Loss")
plt.plot(log_df["epoch"], log_df["val_loss"], label="Validation Loss")
# plt.plot(log_df["epoch"], log_df["ood_iou"], label="Etis-LaribDB iou")
plt.legend()
plt.show()
def ood_correlations(log_csv):
log_df = pd.read_csv(log_csv)
plt.title("SIS-OOD correlation")
plt.xlabel("SIS")
plt.ylabel("Etis-LaribDB OOD performance")
plt.xlim((0, 1))
plt.ylim((0, 1))
plt.scatter(log_df["consistency"], log_df["ood_iou"], label="Consistency")
plt.scatter(log_df["iid_test_iou"], log_df["ood_iou"], label="IID IoU")
plt.legend()
plt.show()
def ood_v_epoch(log_csv):
log_df = pd.read_csv(log_csv)
plt.title("Training Plot Sample")
plt.xlabel("Epochs")
plt.ylabel("SIL")
plt.xlim((0, 500))
plt.ylim((0, 1))
plt.plot(log_df["epoch"], log_df["consistency"], label="consistency")
plt.plot(log_df["epoch"], log_df["ood_iou"], label="ood iou")
plt.legend()
plt.show()
def get_boxplots_for_models():
"""
box plot for comparing model performance. Considers d% reduced along datasets, split according to experiments
and models
:return:
"""
dataset_names = ["Kvasir-SEG", "Etis-LaribDB", "CVC-ClinicDB", "EndoCV2020"]
model_names = ["DeepLab", "FPN, Unet, InductiveNet, TriUnet"]
dataset = []
for fname in sorted(os.listdir("experiments/Data/pickles")):
if "0" in fname:
with open(os.path.join("experiments/Data/pickles", fname), "rb") as file:
model = fname.split("_")[0]
if model == "InductiveNet":
model = "DD-DeepLabV3+"
data = pickle.load(file)
datasets, samples = data["ious"].shape
kvasir_ious = data["ious"][0]
mean_iid_iou = np.median(kvasir_ious)
print(mean_iid_iou)
if "maximum_consistency" in fname:
continue
for i in range(datasets):
if i == 0:
continue
for j in range(samples):
if data["ious"][i, j] < 0.25 or data["ious"][0][j] < 0.75:
print(f"{fname} with id {j} has iou {data['ious'][i, j]} and {data['ious'][0][j]} ")
continue
# dataset.append([dataset_names[i], model, data["ious"][i, j]])
dataset.append(
[dataset_names[i], model, 100 * (data["ious"][i, j] - mean_iid_iou) / mean_iid_iou])
dataset = pd.DataFrame(data=dataset, columns=["Dataset", "Model", "\u0394%IoU"])
print(dataset)
plt.ylim(0, -100)
sns.barplot(x="Dataset", y="\u0394%IoU", hue="Model", data=dataset)
plt.show()
def get_variances_for_models():
dataset_names = ["Kvasir-SEG", "Etis-LaribDB", "CVC-ClinicDB", "EndoCV2020"]
model_names = ["DeepLab", "FPN, Unet, InductiveNet, TriUnet"]
dataset = []
for fname in sorted(os.listdir("experiments/Data/pickles")):
if "maximum_consistency" in fname:
continue
if "0" in fname:
with open(os.path.join("experiments/Data/pickles", fname), "rb") as file:
model = fname.split("_")[0]
if model == "InductiveNet":
model = "DD-DeepLabV3+"
data = pickle.load(file)
datasets, samples = data["ious"].shape
if "maximum_consistency" in fname:
continue
for i in range(datasets):
# if i == 0:
# continue
for j in range(samples):
if data["ious"][0][j] < 0.75:
print(fname, "-", j)
continue
if i == 3 and model == "InductiveNet":
print("inductivenet", data["ious"][i, j])
if i == 3 and model == "DeepLab":
print("DeepLab", data["ious"][i, j])
dataset.append([dataset_names[i], model, data["ious"][i, j]])
iou_dataset = pd.DataFrame(data=dataset, columns=["Dataset", "Model", "Coefficient of Std.Dev"])
std_dataset = iou_dataset.groupby(["Model", "Dataset"]).std() / iou_dataset.groupby(["Model", "Dataset"]).mean()
std_dataset = std_dataset.reset_index()
print(std_dataset)
plt.ylim((0, 0.15))
sns.barplot(x="Dataset", y="Coefficient of Std.Dev", hue="Model", data=std_dataset)
plt.show()
def plot_parameters_sizes():
models = [DeepLab, FPN, InductiveNet, Unet, TriUnet]
model_names = ["DeepLab", "FPN", "InductiveNet", "Unet", "TriUnet"]
for model_name, model_c in zip(model_names, models):
model = model_c()
print(f"{model_name}: {sum(p.numel() for p in model.parameters(recurse=True))}")
def collate_ensemble_results_into_df(type="consistency"):
dataset_names = ["Kvasir-SEG", "Etis-LaribDB", "CVC-ClinicDB", "EndoCV2020"]
model_names = ["DeepLab", "FPN", "Unet", "InductiveNet", "TriUnet"]
dataset = []
for fname in sorted(os.listdir("experiments/Data/pickles")):
if "ensemble" not in fname:
continue
if "maximum_consistency" in fname or "last_epoch" in fname:
continue
if type != "all":
if type == "consistency" and ("augmentation" in fname or "vanilla" in fname):
continue
if type == "augmentation" and "augmentation" not in fname:
continue
if type == "vanilla" and "vanilla" not in fname:
continue
with open(os.path.join("experiments/Data/pickles", fname), "rb") as file:
model = fname.split("-")[0]
# experiment = fname.split("-")[-1]
if "vanilla" in fname:
experiment = "No Augmentation"
elif "augmentation" in fname:
experiment = "Vanilla Augmentation"
else:
experiment = "Consistency Training"
data = pickle.load(file)
# print(file, data.keys())
datasets, samples = data["ious"].shape
if model == "InductiveNet":
model = "DD-DeepLabV3+"
for i in range(datasets):
for j in range(samples):
if data["ious"][0, j] < 0.75: # if bugged out; rare
continue
try:
dataset.append(
[dataset_names[i], model, j, experiment, data["ious"][i, j], data["constituents"][j]])
except KeyError:
continue
iou_dataset = pd.DataFrame(data=dataset, columns=["Dataset", "Model", "ID", "Experiment", "IoU", "constituents"])
# print(iou_dataset)
iou_dataset.to_csv("ensemble_data.csv")
return iou_dataset
def collate_base_results_into_df():
dataset_names = ["Kvasir-SEG", "Etis-LaribDB", "CVC-ClinicDB", "EndoCV2020"]
model_names = ["DeepLab", "FPN", "Unet", "InductiveNet", "TriUnet"]
dataset = []
for fname in sorted(os.listdir("experiments/Data/pickles")):
if "ensemble" in fname:
# print(fname)
continue
if "maximum_consistency" in fname or "last_epoch" in fname:
# print(fname)
continue
with open(os.path.join("experiments/Data/pickles", fname), "rb") as file:
model = fname.split("_")[0]
data = pickle.load(file)
datasets, samples = data["ious"].shape
if model == "InductiveNet":
model = "DD-DeepLabV3+"
experiment = "No Augmentation"
if "sil" in fname and "_G" not in fname:
experiment = "Consistency Training"
elif "_V" in fname:
experiment = "Vanilla Augmentation"
elif "_G" in fname:
experiment = "Inpainter Augmentation"
for i in range(datasets):
for j in range(samples):
if data["ious"][0, j] < 0.75:
continue
dataset.append([dataset_names[i], model, j, experiment, data["ious"][i, j], data["sis"][i, j]])
iou_dataset = pd.DataFrame(data=dataset, columns=["Dataset", "Model", "ID", "Experiment", "IoU", "SIS"])
iou_dataset.to_csv("base_data.csv")
return iou_dataset
def plot_ensemble_performance():
df = collate_ensemble_results_into_df("augmentation")
print(df)
latex = df.groupby(["Model", "Dataset"])["IoU"].mean()
print(latex.reset_index())
print(latex.to_latex(float_format="%.3f"))
order = df.groupby(["Dataset", "Model"])["IoU"].mean().sort_values().index
sns.barplot(data=df, x="Dataset", y="IoU", hue="Model")
plt.show()
grouped_mean = df.groupby(["Dataset", "Model", "ID"])["IoU"].mean()
# print(grouped_mean)
grouped_iid = np.abs(grouped_mean - grouped_mean["Kvasir-SEG"]) / grouped_mean["Kvasir-SEG"]
# print(grouped_iid)
nedf = collate_base_results_into_df()
ne_grouped_mean = nedf.groupby(["Dataset", "Model"])["IoU"].mean()
# print(ne_grouped_mean)
ne_grouped_iid = np.abs(ne_grouped_mean["Kvasir-SEG"] - ne_grouped_mean) / ne_grouped_mean["Kvasir-SEG"]
# print(ne_grouped_iid)
comparison = ne_grouped_iid - grouped_iid
comparison = comparison.reset_index()
sns.barplot(data=comparison, x="Dataset", y="IoU", hue="Model")
plt.show()
# plot delta vs variance
ne_grouped_coeff_std = nedf.groupby(["Dataset", "Model"])["IoU"].std() / ne_grouped_mean
ne_grouped_coeff_std = ne_grouped_coeff_std.reset_index()
ne_grouped_coeff_std = ne_grouped_coeff_std.rename(columns={"IoU": "Coeff. StD of IoUs"})
# print(ne_grouped_coeff_std.head(10))
sns.barplot(data=ne_grouped_coeff_std, x="Dataset", y="Coeff. StD of IoUs", hue="Model")
plt.show()
test = pd.merge(ne_grouped_coeff_std, comparison)
test = test.rename(columns={"IoU": "% Improvement over mean constituent IoU"})
test["% Improvement over mean constituent IoU"] *= 100
test = test.groupby(["Model", "ID"]).mean()
test = test.reset_index()
print("mean", np.mean(test))
print("max", np.max(test))
# print(test)
sns.lineplot(data=test, x="Coeff. StD of IoUs", y="% Improvement over mean constituent IoU", err_style="bars",
color="gray", linestyle='--')
test = test.groupby("Model").mean().reset_index()
sns.scatterplot(test["Coeff. StD of IoUs"], test["% Improvement over mean constituent IoU"], hue=test["Model"],
s=100, ci=99)
plt.show()
def plot_overall_ensemble_performance():
df = collate_ensemble_results_into_df("both")
grouped_mean = df.groupby(["Dataset", "Model", "ID"])["IoU"].mean()
nedf = collate_base_results_into_df()
ne_grouped_mean = nedf.groupby(["Dataset", "Model"])["IoU"].mean()
# plot delta vs variance
ne_grouped_coeff_std = nedf.groupby(["Dataset", "Model"])["IoU"].std() / ne_grouped_mean
ne_grouped_coeff_std = ne_grouped_coeff_std.reset_index()
ne_grouped_coeff_std = ne_grouped_coeff_std.rename(columns={"IoU": "Coeff. StD of IoUs"})
def plot_cons_vs_aug_ensembles():
df = collate_ensemble_results_into_df("consistency")
df2 = collate_ensemble_results_into_df("augmentation")
grouped = df2.groupby(["Model", "Dataset"])["IoU"].mean()
grouped2 = df2.groupby(["Dataset"])["IoU"].mean()
grouped3 = df.groupby(["Dataset"])["IoU"].mean()
print(grouped2)
print(grouped3)
latex = grouped.to_latex(float_format="%.3f")
for dset in np.unique(df2["Dataset"])[::-1]:
utest = mannwhitneyu(df[df["Dataset"] == dset]["IoU"], df2[df2["Dataset"] == dset]["IoU"])
print(f"{dset} & {round(utest[0], 5)} & {round(utest[1], 5)} \\\ ")
def plot_inpainter_vs_conventional_performance():
df = collate_base_results_into_df()
df = df[df["Experiment"] != "Consistency Training"]
models = np.unique(df["Model"])
for dset in np.unique(df["Dataset"])[::-1]:
overall_utest = mannwhitneyu(df[(df["Experiment"] == "Vanilla Augmentation") & (df["Dataset"] == dset)]["IoU"],
df[(df["Experiment"] == "Inpainter Augmentation") & (df["Dataset"] == dset)][
"IoU"])
print(f"{dset} & {overall_utest[0]}, p={round(overall_utest[1], 5)} \\\ ")
for model in models:
print(f"{model}", end="")
for dset in np.unique(df["Dataset"]):
ttest = ttest_ind(
df[(df["Experiment"] == "Inpainter Augmentation") & (df["Dataset"] == dset) & (df["Model"] == model)][
"IoU"],
df[(df["Experiment"] == "Vanilla Augmentation") & (df["Dataset"] == dset) & (df["Model"] == model)][
"IoU"],
equal_var=False)
print(f" & {round(ttest[1], 5)}", end="")
print("\\\ ")
table = df.groupby(["Dataset", "Model", "Experiment"])["IoU"].mean()
no_augmentation = df[df["Experiment"] == "No Augmentation"].groupby(["Dataset"])[
"IoU"].mean()
improvements = 100 * (table - no_augmentation) / no_augmentation
improvements = improvements.reset_index()
improvements = improvements[improvements["Experiment"] != "No Augmentation"]
improvements.rename(columns={"IoU": "% Change in mean IoU with respect to No Augmentation"}, inplace=True)
test = table.to_latex(float_format="%.3f")
# improvements = improvements[improvements["Dataset"] == "CVC-ClinicDB"]
print(np.max(improvements[improvements["Experiment"] == "Vanilla Augmentation"]))
print(np.mean(improvements[improvements["Experiment"] == "Vanilla Augmentation"]))
print(np.max(improvements[improvements["Experiment"] == "Inpainter Augmentation"]))
print(np.mean(improvements[improvements["Experiment"] == "Inpainter Augmentation"]))
sns.boxplot(data=improvements, x="Dataset", y="% Change in mean IoU with respect to No Augmentation",
hue="Experiment")
plt.savefig("augmentation_plot.eps")
plt.show()
return table
def plot_training_procedure_performance():
df = collate_base_results_into_df()
df = df[df["Experiment"] != "Inpainter Augmentation"]
index = df.index[df["Experiment"] == "No Augmentation"].tolist() + df.index[
df["Experiment"] == "Vanilla Augmentation"].tolist() + df.index[
df["Experiment"] == "Consistency Training"].tolist()
df = df.reindex(index)
# print(df)
filt = df.groupby(["Dataset", "ID", "IoU", "Experiment"]).mean()
filt = filt.reset_index()
hue_order = df.groupby(["Experiment"])["IoU"].mean().sort_values().index
order = df.groupby(["Dataset"])["IoU"].mean().sort_values().index
table = df.groupby(["Dataset", "Model", "Experiment"])["IoU"].mean()
w_p_values = table.reset_index()
for i, row in w_p_values.iterrows():
experiment = row["Experiment"]
model = row["Model"]
dataset = row["Dataset"]
ious = df[(df["Dataset"] == dataset) & (df["Model"] == model) & (df["Experiment"] == experiment)]["IoU"]
augmentation_ious = \
df[(df["Dataset"] == dataset) & (df["Model"] == model) & (df["Experiment"] == "Vanilla Augmentation")][
"IoU"]
w_p_values.at[i, "p-value"] = round(ttest_ind(ious, augmentation_ious, equal_var=False)[-1], 3)
for dset in np.unique(df["Dataset"]):
overall_ttest = mannwhitneyu(df[(df["Experiment"] == "Consistency Training") & (df["Dataset"] == dset)]["IoU"],
df[(df["Experiment"] == "Vanilla Augmentation") & (df["Dataset"] == dset)]["IoU"])
print(f"{dset}: {overall_ttest[0]}, p={round(overall_ttest[1], 5)} ")
test = table.to_latex(float_format="%.3f")
no_augmentation_performance = filt[filt["Experiment"] == "No Augmentation"].groupby(["Dataset"])["IoU"].mean()
# C.StD analysis
cstd = filt.groupby(["Dataset", "Experiment"])["IoU"].std() / filt.groupby(["Dataset", "Experiment"])[
"IoU"].mean()
cstd = cstd.reset_index()
cstd.rename(columns={"IoU": "Coefficient of Standard Deviation of IoUs"}, inplace=True)
sns.barplot(data=cstd, x="Dataset", y="Coefficient of Standard Deviation of IoUs", hue="Experiment",
hue_order=["No Augmentation", "Vanilla Augmentation", "Consistency Training"])
plt.savefig("consistency_training_cstd.eps")
plt.show()
augmentation_performance = filt[filt["Experiment"] == "Vanilla Augmentation"].groupby(["Dataset"])["IoU"].mean()
test = improvement_pct = 100 * (filt.groupby(["Dataset", "Experiment", "ID"])[
"IoU"].mean() - augmentation_performance) / augmentation_performance
print(test.groupby(["Experiment"]).mean())
input()
improvement_pct = 100 * (filt.groupby(["Dataset", "Experiment", "ID"])[
"IoU"].mean() - no_augmentation_performance) / no_augmentation_performance
improvement_pct = improvement_pct.reset_index()
print(improvement_pct[improvement_pct["Experiment"] == "No Augmentation"])
improvement_pct = improvement_pct[improvement_pct["Experiment"] != "No Augmentation"]
# print(np.max(improvement_pct[improvement_pct["Experiment"] == "Consistency Training"]))
print("Consistency")
print(np.mean(improvement_pct[improvement_pct["Experiment"] == "Consistency Training"]))
print("Augmentation")
print(np.mean(improvement_pct[improvement_pct["Experiment"] == "Vanilla Augmentation"]))
improvement_pct.rename(columns={"IoU": "% Change in mean IoU with respect to No Augmentation"}, inplace=True)
sns.boxplot(data=improvement_pct, x="Dataset", y="% Change in mean IoU with respect to No Augmentation",
hue="Experiment")
plt.savefig("consistency_training_percent.eps")
plt.show()
# print(w_p_values)
# scatter = sns.barplot(data=filt, x="Dataset", y="IoU", hue="Experiment", hue_order=hue_order, order=order)
# scatter.legend(loc='lower right')
# plt.show()
return table
def compare_models(training_method):
df = collate_base_results_into_df()
df = df[df["Experiment"] == training_method]
# p_value_matrix = np.zeros((len(np.unique(df["Model"])), len(np.unique(df["Model"]))))
# models = np.unique(df["Model"])
# print()
# np.set_printoptions(precision=5, suppress=True)
# fig, ax = plt.subplots(2, 2, sharey=True, sharex=True, figsize=(8, 8))
# for didx, dataset in enumerate(np.unique(df["Dataset"])):
# for i, model in enumerate(models):
# for j, compare_model in enumerate(models):
# p_value_matrix[i, j] = round(ttest_ind(df[(df["Model"] == model) & (df["Dataset"] == dataset)]["IoU"],
# df[(df["Model"] == compare_model) & (df["Dataset"] == dataset)][
# "IoU"],
# equal_var=False)[1], 5)
#
# sns.heatmap(p_value_matrix, ax=ax.flatten()[didx], annot=True, xticklabels=models, yticklabels=models,
# cbar=False)
# ax.flatten()[didx].set_title(dataset)
# plt.tight_layout()
# plt.savefig("model_pvals.eps")
# plt.show()
#
# df_van = df.groupby(["Dataset", "Model"])["IoU"].mean()
# df_van = df_van.reset_index()
# order = df_van.groupby(["Dataset"])["IoU"].mean().sort_values().index
#
# plt.hist(df[df["Dataset"] == "Kvasir-SEG"]["IoU"])
# plt.show()
# sns.barplot(data=df, x="Dataset", y="IoU", hue="Model", order=order)
# plt.show()
# generalizability_gap
grouped = df.groupby(["Dataset", "Model", "ID"])["IoU"].mean().reset_index()
ood = grouped[grouped["Dataset"] != "Kvasir-SEG"].copy()
print(ood.columns)
iid = grouped[grouped["Dataset"] == "Kvasir-SEG"].copy()
for i, row in ood.iterrows():
id = ood.at[i, "ID"]
dataset = ood.at[i, "Dataset"]
model = ood.at[i, "Model"]
iou = row["IoU"]
iid_iou = float(iid[(iid["ID"] == id) & (iid["Model"] == model)]["IoU"])
print(iou)
print(iid_iou)
ood.at[i, "gap"] = 100 * (iou - iid_iou) / iid_iou
sns.barplot(data=ood, x="Dataset", hue="Model", y="gap")
plt.ylim(-100, 0)
plt.ylabel("% Change in IoU wrt IID")
plt.savefig("delta_iou_baseline.eps")
plt.show()
cstds = df.groupby(["Dataset", "Model"])["IoU"].std() / df.groupby(["Dataset", "Model"])["IoU"].mean()
cstds = cstds.reset_index()
sns.barplot(data=cstds, x="Dataset", y="IoU", hue="Model")
both = pd.merge(ood, cstds, on=["Model", "Dataset"])
plt.savefig("cstd_baseline.eps")
plt.show()
fig, ax = plt.subplots(3, 1, figsize=(6, 6))
for didx, dataset in enumerate(np.unique(both["Dataset"])):
test = pearsonr(both[both["Dataset"] == dataset]["IoU_y"], both[both["Dataset"] == dataset]["gap"])
ax.flatten()[didx].set_title(f"{dataset} : Rp={round(test[0], 5)}, p={round(test[1], 5)}")
if didx == 2:
scatter = sns.scatterplot(ax=ax.flatten()[didx], data=both[both["Dataset"] == dataset], x="IoU_y", y="gap",
hue="Model")
scatter.legend(loc="upper center", bbox_to_anchor=(0.5, -0.2), ncol=3)
else:
sns.scatterplot(ax=ax.flatten()[didx], data=both[both["Dataset"] == dataset], x="IoU_y", y="gap",
hue="Model", legend=False)
# plt.tight_layout()
for axis in ax:
axis.set_ylabel("")
axis.set_xlabel("")
axis.set_yticklabels([])
axis.set_xticklabels([])
# axis.set_ylim(axis.get_ylim()[::-1])
ax.flatten()[2].set_xlabel("C.Std mIoU")
ax.flatten()[1].set_ylabel("% Change in mIoU wrt IID")
plt.tight_layout()
plt.savefig("underspecification_baseline.eps")
plt.show(ypad=4)
def plot_consistencies():
df = collate_base_results_into_df()
df.groupby(["Experiment", "Dataset", "Model", "ID"]).mean().reset_index().to_csv("test.csv")
grouped = df.groupby(["Experiment", "Dataset", "Model", "ID"])["SIS"].mean().reset_index()
grouped = grouped[grouped["Experiment"] != "Inpainter Augmentation"]
grouped = grouped[grouped["Dataset"] == "Kvasir-SEG"]
# grouped.to_csv("test.csv")
sns.barplot(data=grouped, x="Model", y="SIS", hue="Experiment")
plt.show()
grouped = df.groupby(["Experiment", "Dataset", "Model", "ID"])["IoU"].mean().reset_index()
grouped = grouped[grouped["Experiment"] != "Inpainter Augmentation"]
grouped = grouped[grouped["Dataset"] == "Kvasir-SEG"]
# grouped.to_csv("test.csv")
sns.barplot(data=grouped, x="Model", y="IoU", hue="Experiment")
plt.tight_layout()
plt.show()
# aug_consistencies = []
# aug_oods = []
# cons_consistencies = []
# cons_oods
cons_df = pd.DataFrame()
aug_df = pd.DataFrame()
for file in os.listdir("logs/consistency/FPN"):
if "augmentation" in file:
aug_df = aug_df.append(pd.read_csv(os.path.join("logs/consistency/FPN", file)), ignore_index=True)
if "consistency" in file:
cons_df = aug_df.append(pd.read_csv(os.path.join("logs/consistency/FPN", file)), ignore_index=True)
else:
continue
cons_df = cons_df[cons_df["epoch"] < 300]
aug_df = aug_df[aug_df["epoch"] < 300]
sns.lineplot(data=cons_df, x="epoch", y="consistency", color="orange")
sns.lineplot(data=aug_df, x="epoch", y="consistency", color="blue")
sns.lineplot(data=cons_df, x="epoch", y="ood_iou", color="orange")
sns.lineplot(data=aug_df, x="epoch", y="ood_iou", color="blue")
plt.show()
def plot_ensemble_variance_relationship(training_method):
df = collate_ensemble_results_into_df(training_method)
df_constituents = collate_base_results_into_df()
df_constituents = df_constituents[df_constituents["Experiment"] != "Inpainter Augmentation"]
df["constituents"] = df["constituents"].apply(
lambda x: [int(i.split("_")[-1]) for i in x] if type(x) == type([]) else int(x))
if training_method != "all":
if training_method == "vanilla": training_method = "No Augmentation"
if training_method == "augmentation": training_method = "Vanilla Augmentation"
if training_method == "consistency": training_method = "Consistency Training"
df_constituents = df_constituents[df_constituents["Experiment"] == training_method]
colors = ["tab:blue", "tab:orange", "tab:green", "tab:red"]
# colors = ["b", "g", "r", "c", "m", "y"]
colormap = dict(zip(np.unique(df["Dataset"]), colors))
var_dataset = pd.DataFrame()
for i, row in df.iterrows():
model = df.at[i, "Model"]
id = df.at[i, "ID"]
experiment = df.at[i, "Experiment"]
if model == "diverse":
filtered = df_constituents[
(df_constituents["ID"] == id) &
(df_constituents["Experiment"] == experiment)]
cstd = (filtered.groupby(["Dataset"]).std() / filtered.groupby(["Dataset"]).mean())["IoU"]
improvements = df[
(df["Model"] == model) & (df["Experiment"] == experiment) & (df["ID"] == id)]
improvements = 100 * (improvements.groupby(["Dataset"])["IoU"].mean() - filtered.groupby(["Dataset"])[
"IoU"].mean()) / filtered.groupby(["Dataset"])["IoU"].mean()
cstd = cstd.reset_index()
improvements = improvements.reset_index()
cstd.rename(columns={"IoU": "C.StD"}, inplace=True)
improvements.rename(columns={"IoU": "% Increase in Generalizability wrt Constituents Mean"}, inplace=True)
merged = pd.merge(improvements, cstd)
merged["Model"] = [model] * 4 # dataset length
merged["ID"] = [id] * 4
merged["Experiment"] = [experiment] * 4
var_dataset = var_dataset.append(merged)
else:
constituents = df.at[i, "constituents"]
filtered = df_constituents[
(df_constituents["Model"] == model) & (df_constituents["ID"].isin(constituents)) & (
df_constituents["Experiment"] == experiment)]
cstd = (filtered.groupby(["Dataset"]).std() / filtered.groupby(["Dataset"]).mean())["IoU"]
improvements = df[
(df["Model"] == model) & (df["Experiment"] == experiment) & (df["ID"] == id)]
improvements = 100 * (improvements.groupby(["Dataset"])["IoU"].mean() - filtered.groupby(["Dataset"])[
"IoU"].mean()) / filtered.groupby(["Dataset"])["IoU"].mean()
cstd = cstd.reset_index()
improvements = improvements.reset_index()
cstd.rename(columns={"IoU": "C.StD"}, inplace=True)
improvements.rename(columns={"IoU": "% Increase in Generalizability wrt Constituents Mean"}, inplace=True)
merged = pd.merge(improvements, cstd)
merged["Model"] = [model] * 4
merged["ID"] = [id] * 4
merged["Experiment"] = [experiment] * 4
var_dataset = var_dataset.append(merged)
# improvements = filtered.groupby
# cstd = filtered
# df.at[i, "cstd"] =
# cstds.append(0)
print(len(np.unique(var_dataset[var_dataset["Experiment"] == "Vanilla Augmentation"][
"% Increase in Generalizability wrt Constituents Mean"])))
print(len(np.unique(var_dataset[var_dataset["Experiment"] == "No Augmentation"][
"% Increase in Generalizability wrt Constituents Mean"])))
print(var_dataset.columns)
datasets = np.unique(var_dataset["Dataset"])
training_methods = ["No Augmentation", "Vanilla Augmentation", "Consistency Training"]
fig, ax = plt.subplots(len(datasets), len(training_methods), figsize=(11, 12))
var_dataset = var_dataset.replace("diverse", "MultiModel")
for i, dataset_name in enumerate(datasets):
for j, training_method in enumerate(training_methods):
dataset_filtered = var_dataset[
(var_dataset["Dataset"] == dataset_name) & (var_dataset["Experiment"] == training_method)]
# sns.regplot(ax=ax.flatten()[i], data=dataset_filtered, x="C.StD",
# y="% Increase in Generalizability wrt Constituents Mean",
# ci=99,
# color=colormap[dataset_name], label=dataset_name)
# correlation = pearsonr(dataset_filtered["C.StD"],
# dataset_filtered["% Increase in Generalizability wrt Constituents Mean"])
if j == 0: # seaborn does not like global legends
scatter = sns.scatterplot(ax=ax[i, j], data=dataset_filtered, x="C.StD",
y="% Increase in Generalizability wrt Constituents Mean",
ci=99, legend=False, color=colormap[dataset_name], label=dataset_name)
ax[i, j].set_title(training_method)
else:
scatter = sns.scatterplot(ax=ax[i, j], data=dataset_filtered, x="C.StD",
y="% Increase in Generalizability wrt Constituents Mean",
ci=99, legend=False, color=colormap[dataset_name])
correlation = spearmanr(dataset_filtered["C.StD"],
dataset_filtered["% Increase in Generalizability wrt Constituents Mean"])
ax[i, j].set_title(f"Rs={correlation[0]:.3f}, p={correlation[1]:.6f}")
for a in ax.flatten():
a.set(xlabel=None)
a.set(ylabel=None)
for axis, col in zip(ax[0], training_methods):
axis.annotate(col, xy=(0.5, 1.5), xytext=(0, 5),
xycoords='axes fraction', textcoords='offset points',
size='xx-large', ha='center', va='baseline')
fig.add_subplot(111, frameon=False)
# fig.legend(loc='lower center', bbox_to_anchor=(0.5, 0.5), ncol=2, labels=np.unique(var_dataset["Dataset"]))
fig.legend(loc='lower center', bbox_to_anchor=(0.5, 0), ncol=4)
plt.tick_params(labelcolor='none', which='both', top=False, bottom=False, left=False, right=False)
plt.ylabel("% Increase in Generalizability wrt Constituents Mean")
plt.xlabel("Coefficient of Standard Deviation")
# plt.title()
fig.tight_layout()
# fig.subplots_adjust(bottom=0.2)
plt.savefig("ensemble_variance_relationship_statistical.eps")
plt.show()
# hue_order = var_dataset.groupby(["Model"])[
# "% Increase in Generalizability wrt Constituents Mean"].mean().sort_values().index
var_dataset = var_dataset.replace("diverse", "MultiModel")
fig, ax = plt.subplots(figsize=(12, 6))
sns.boxplot(data=var_dataset, ax=ax, x="Dataset", y="% Increase in Generalizability wrt Constituents Mean",
hue="Model",
order=["Kvasir-SEG", "CVC-ClinicDB", "EndoCV2020", "Etis-LaribDB"])
plt.axhline(0, linestyle="--")
plt.savefig("improvements_due_to_ensembles.eps")
plt.show()
def get_ensemble_p_vals():
singular = collate_base_results_into_df()
# cross-model t-test (not used in thesis)
print("No augmentation")
for mix, model in enumerate(np.unique(singular["Model"])):
print(model, end="&")
for dix, dataset in enumerate(np.unique(singular["Dataset"])):
single = singular[singular["Experiment"] == "No Augmentation"]
ensemble = collate_ensemble_results_into_df(type="vanilla")
single = single[(single["Dataset"] == dataset) & (single["Model"] == model)]
ensemble = ensemble[(ensemble["Dataset"] == dataset) & (ensemble["Model"] == model)]
ttest = ttest_ind(
single["IoU"], ensemble["IoU"], equal_var=False
)
print(round(ttest[1], 5), end=" & ")
print("\\\ ")
print("Augmentation")
for mix, model in enumerate(np.unique(singular["Model"])):
print(model, end="&")
for dix, dataset in enumerate(np.unique(singular["Dataset"])):
single = singular[singular["Experiment"] == "Vanilla Augmentation"]
ensemble = collate_ensemble_results_into_df(type="augmentation")
single = single[(single["Dataset"] == dataset) & (single["Model"] == model)]
ensemble = ensemble[(ensemble["Dataset"] == dataset) & (ensemble["Model"] == model)]
ttest = ttest_ind(
single["IoU"], ensemble["IoU"], equal_var=False
)
print(round(ttest[1], 5), end=" & ")
print("\\\ ")
print("Consistency Training")
for mix, model in enumerate(np.unique(singular["Model"])):
print(model, end="&")
for dix, dataset in enumerate(np.unique(singular["Dataset"])):
single = singular[singular["Experiment"] == "Consistency Training"]
ensemble = collate_ensemble_results_into_df(type="consistency")
single = single[(single["Dataset"] == dataset) & (single["Model"] == model)]
ensemble = ensemble[(ensemble["Dataset"] == dataset) & (ensemble["Model"] == model)]
ttest = ttest_ind(
single["IoU"], ensemble["IoU"], equal_var=False
)
print(round(ttest[1], 5), end=" & ")
print("\\\ ")
# model-averaged
print("When averaged across models:")
print("No augmentation")
experiments_long = ["No Augmentation", "Conventional Augmentation", "Consistency Training"]
for dix, dataset in enumerate(np.unique(singular["Dataset"])):
single = singular[singular["Experiment"] == "No Augmentation"]
ensemble = collate_ensemble_results_into_df(type="vanilla")
single = single[(single["Dataset"] == dataset)]
ensemble = ensemble[(ensemble["Dataset"] == dataset)]
ttest = mannwhitneyu(
single["IoU"], ensemble["IoU"]
)
print(round(ttest[1], 3), end=" & ")
print("\nAugmentation")
for dix, dataset in enumerate(np.unique(singular["Dataset"])):
single = singular[singular["Experiment"] == "Vanilla Augmentation"]
ensemble = collate_ensemble_results_into_df(type="augmentation")
single = single[(single["Dataset"] == dataset)]
ensemble = ensemble[(ensemble["Dataset"] == dataset)]
ttest = mannwhitneyu(
single["IoU"], ensemble["IoU"]
)
print(round(ttest[1], 3), end=" & ")
print("\nConsistency Training")
for dix, dataset in enumerate(np.unique(singular["Dataset"])):
single = singular[singular["Experiment"] == "Consistency Training"]
ensemble = collate_ensemble_results_into_df(type="consistency")
single = single[(single["Dataset"] == dataset)]
ensemble = ensemble[(ensemble["Dataset"] == dataset)]
ttest = mannwhitneyu(
single["IoU"], ensemble["IoU"]
)
print(round(ttest[1], 3), end=" & ")
experiments = ["vanilla", "augmentation", "consistency"]
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(8, 8))
for dix, dataset in enumerate(np.unique(singular["Dataset"])):
p_values = np.zeros((len(experiments), len(experiments)))
for i, exp1 in enumerate(experiments):
for j, exp2 in enumerate(experiments):
df1 = collate_ensemble_results_into_df(exp1)
df2 = collate_ensemble_results_into_df(exp2)
test = mannwhitneyu(df1[df1["Dataset"] == dataset]["IoU"],
df2[(df2["Dataset"] == dataset)]["IoU"])
p_values[i, j] = round(test[1], 5)
sns.heatmap(p_values, ax=axes.flatten()[dix], annot=True, xticklabels=experiments_long,
yticklabels=experiments_long,
cbar=False)
ax = axes.flatten()[dix].set_title(dataset)
plt.tight_layout()
plt.savefig("ensemble_relative_pvals.eps")
plt.show()
def compare_ensembles():
singular = collate_base_results_into_df()
singular_no_augment = singular[singular["Experiment"] == "No Augmentation"].groupby(["Dataset", "ID"])[
"IoU"].mean()
singular_augment = singular[singular["Experiment"] == "Vanilla Augmentation"].groupby(["Dataset", "ID"])[
"IoU"].mean()
singular_ct = singular[singular["Experiment"] == "Consistency Training"].groupby(["Dataset", "ID"])[
"IoU"].mean()
no_augment = collate_ensemble_results_into_df(type="vanilla").groupby(["Dataset", "ID"])[
"IoU"].mean()
augment = collate_ensemble_results_into_df(type="augmentation").groupby(["Dataset", "ID"])[
"IoU"].mean()
consistency = collate_ensemble_results_into_df(type="consistency").groupby(["Dataset", "ID"])[
"IoU"].mean()
no_augment_improvements = (100 * (no_augment - singular_no_augment) / singular_no_augment).reset_index()
augment_improvements = (100 * (augment - singular_augment) / singular_augment).reset_index()
ct_improvements = (100 * (consistency - singular_ct) / singular_ct).reset_index()
no_augment_improvements["Experiment"] = pd.Series(["No Augmentation"] * len(no_augment_improvements),
index=no_augment_improvements.index)
augment_improvements["Experiment"] = pd.Series(["Conventional Augmentation"] * len(augment_improvements),
index=augment_improvements.index)
ct_improvements["Experiment"] = pd.Series(["Consistency Training"] * len(ct_improvements),
index=ct_improvements.index)
# print("No augmentation")
# print(no_augment_improvements)
# print("Augmentation")
# print(augment_improvements)
# print("Consistency Training")
# print(ct_improvements)
# print(augment_improvements)
overall_improvements = pd.concat([no_augment_improvements, augment_improvements, ct_improvements],
ignore_index=True)
experiments = np.unique(overall_improvements["Experiment"])
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(8, 8))
for dix, dataset in enumerate(np.unique(overall_improvements["Dataset"])):
p_values = np.zeros((len(experiments), len(experiments)))
for i, exp1 in enumerate(experiments):
for j, exp2 in enumerate(experiments):
test = ttest_ind(overall_improvements[(overall_improvements["Dataset"] == dataset) & (
overall_improvements["Experiment"] == exp1)]["IoU"],
overall_improvements[(overall_improvements["Dataset"] == dataset) & (
overall_improvements["Experiment"] == exp2)]["IoU"], equal_var=True)
p_values[i, j] = test[1]
sns.heatmap(p_values, ax=axes.flatten()[dix], annot=True, xticklabels=experiments, yticklabels=experiments,
cbar=False)
ax = axes.flatten()[dix].set_title(dataset)
plt.tight_layout()
plt.savefig("ensemble_improvement_pvals.eps")
plt.show()
box = sns.boxplot(data=overall_improvements, x="Experiment", y="IoU", hue="Dataset",
hue_order=["Kvasir-SEG", "EndoCV2020", "CVC-ClinicDB", "Etis-LaribDB"])
box.legend(loc="upper left")
box.set(ylabel="Improvement in IoU (%)")
box.set(xlabel="Training Method")
box.axhline(0, linestyle="--")
plt.savefig("ensemble_improvements.eps")
print("..,.")
print(overall_improvements.groupby(["Experiment"])["IoU"].mean())
print(overall_improvements.groupby(["Experiment"])["IoU"].max())
plt.show()
grouped = singular[singular["Experiment"] != "Inpainter Augmentation"].groupby(["Model", "Dataset", "Experiment"])[
"IoU"]
constituent_cstd = grouped.std() / grouped.mean()
print(constituent_cstd)
def test():
ensemble = collate_ensemble_results_into_df("all")
ensemble = ensemble.replace("augmentation", "Vanilla Augmentation")
ensemble = ensemble.replace("vanilla", "No Augmentation")
ensemble = ensemble.replace("consistency", "Consistency Training")
ensemble = ensemble[ensemble["Model"] != "diverse"]
ensemble_means = ensemble.groupby(["Experiment", "Dataset", "Model", "ID"])["IoU"].mean()
singular = collate_base_results_into_df()
singular = singular[singular["Experiment"] != "Inpainter Augmentation"]
singular_grouped = singular.groupby(["Experiment", "Dataset", "Model"])["IoU"]
# input()
ensemble_improvements = 100 * (ensemble_means - singular_grouped.mean()) / singular_grouped.mean()
singular_cstds = singular_grouped.std() / singular_grouped.mean()
merged = pd.merge(ensemble_improvements, singular_cstds, how='inner', on=["Experiment", "Dataset", "Model"])
# merged = merged.groupby(["Experiment", "Model"]).mean()
fig = sns.scatterplot(data=merged, x="IoU_y", y="IoU_x", hue="Experiment")
test = spearmanr(merged["IoU_y"], merged["IoU_x"])
plt.title(f"R_s = {round(test[0], 5)}, p={round(test[1], 5)}")
fig.set_ylabel("Change in IoU (%)")
fig.set_xlabel("IoU C.StD.")
# print(spearmanr(merged["IoU_y"], merged["IoU_x"]))
plt.savefig("ensembles_underspecification.eps")
plt.show()
if __name__ == '__main__':
training_plot("logs/consistency/DeepLab/consistency_1.csv")
# plot_inpainter_vs_conventional_performance()
# plot_training_procedure_performance()
# plot_ensemble_performance()
# compare_models("No Augmentation")
# compare_models("Vanilla Augmentation")
# compare_models("Consistency Training")
# plot_ensemble_variance_relationship("all")
# plot_cons_vs_aug_ensembles()
# compare_ensembles()
# get_ensemble_p_vals()
# test()