#!/bin/bash #SBATCH -p dgx2q # partition (queue) #SBATCH -N 1 # number of nodes #SBATCH -c 4 # number of cores #SBATCH -w g001 #SBATCH --gres=gpu:1 # #SBATCH --mem 128G # memory pool for all cores # Removed due to bug in Slurm 20.02.5 #SBATCH -t 4-0:00 # time (D-HH:MM) #SBATCH -o slurm.%N.%j.out # STDOUT #SBATCH -e slurm.%N.%j.err # STDERR ulimit -s 10240 module purge module load slurm/20.02.7 module load cuda11.0/blas/11.0.3 module load cuda11.0/fft/11.0.3 module load cuda11.0/nsight/11.0.3 module load cuda11.0/profiler/11.0.3 module load cuda11.0/toolkit/11.0.3 if [ -n "$SLURM_CPUS_PER_TASK" ]; then omp_threads=$SLURM_CPUS_PER_TASK else omp_threads=4 fi export OMP_NUM_THREADS=$omp_threads # OpenMP, Numpy export MKL_NUM_THREADS=$omp_threads # Intel MKL export NUMEXPR_NUM_THREADS=$omp_threads # Python3 Multiproc # export OPENBLAS_NUM_THREADS=2 # Using OpenBLAS? # export VECLIB_MAXIMUM_THREADS=2 # Accelware Vector Lib export PYTHONPATH=$PWD srun python experiments/train_ensemble.py