[8eeb5a]: / experiments / collect_generalizability_metrics.py

Download this file

338 lines (300 with data), 18.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import pickle
from os import listdir
from os.path import join
import pickle as pkl
import matplotlib.pyplot as plt
from tqdm import tqdm
import pandas as pd
import torch
import numpy as np
from data.etis import EtisDataset
from data.hyperkvasir import KvasirSegmentationDataset
from data.endocv import EndoCV2020
from data.cvc import CVC_ClinicDB
from models.segmentation_models import *
from models.ensembles import *
from evaluation import metrics
from torch.utils.data import DataLoader
from perturbation.model import ModelOfNaturalVariation
import random
class ModelEvaluator:
def __init__(self):
self.datasets = [
EtisDataset("Datasets/ETIS-LaribPolypDB"),
CVC_ClinicDB("Datasets/CVC-ClinicDB"),
EndoCV2020("Datasets/EndoCV2020"),
]
self.dataloaders = [
DataLoader(KvasirSegmentationDataset("Datasets/HyperKvasir", split="test"))] + \
[DataLoader(dataset) for dataset in self.datasets]
self.dataset_names = ["Kvasir-Seg", "Etis-LaribDB", "CVC-ClinicDB", "EndoCV2020"]
# self.models = [DeepLab, FPN, InductiveNet, TriUnet, Unet]
# self.model_names = ["DeepLab", "FPN", "InductiveNet", "TriUnet", "Unet"]
# self.models = [FPN]
# self.model_names = ["FPN"]
# self.models = [InductiveNet]
# self.model_names = ["InductiveNet"]
self.models = [Unet]
self.model_names = ["Unet"]
def parse_experiment_details(self, model_name, eval_method, loss_fn, aug, id, last_epoch=False):
"""
Note: Supremely messy, since the file structure just sort of evolved
"""
path = "Predictors"
if aug != "0":
path = join(path, "Augmented")
path = join(path, model_name)
path = join(path, eval_method)
if aug == "G":
path += "inpainter_"
if loss_fn == "sil":
path += "consistency"
else:
if model_name == "InductiveNet" and aug != "V":
path += "zaugmentation" # oops
else:
path += "augmentation"
path += f"_{id}"
else:
path = join(path, "Vanilla")
path = join(path, model_name)
path = join(path, "vanilla")
path += f"_{id}"
if eval_method == "maximum_consistency":
path += "-maximum-consistency"
elif last_epoch:
path += "_last_epoch"
return torch.load(path), path
def get_table_data(self, sample_range, id_range, show_reconstruction=False, show_consistency_examples=False):
mnv = ModelOfNaturalVariation(1)
for model_constructor, model_name in zip(self.models, self.model_names):
for eval_method in [""]:
for loss_fn in ["j"]:
for aug in ["G"]:
sis_matrix = np.zeros((len(self.dataloaders), len(id_range)))
mean_ious = np.zeros((len(self.dataloaders), len(id_range)))
for id in id_range:
try:
state_dict, full_name = self.parse_experiment_details(model_name, eval_method, loss_fn,
aug,
id)
model = model_constructor().to("cuda")
model.load_state_dict(state_dict)
print(f"Evaluating {full_name}")
except FileNotFoundError:
print(f"{model_name}-{eval_method}-{loss_fn}-{aug}-{id} not found, continuing...")
continue
# fig, ax = plt.subplots(ncols=4, nrows=3, figsize=(4, 3), dpi=1000)
# fig.subplots_adjust(wspace=0, hspace=0)
for dl_idx, dataloader in enumerate(self.dataloaders):
# print("dl idx: ", dl_idx)
# seeding ensures SIS metrics are non-stochastic
np.random.seed(0)
torch.manual_seed(0)
random.seed(0)
for i, (x, y, _) in enumerate(dataloader):
img, mask = x.to("cuda"), y.to("cuda")
aug_img, aug_mask = mnv(img, mask)
out = model.predict(img)
aug_out = model.predict(aug_img)
if dl_idx == 0 and show_consistency_examples:
fig, ax = plt.subplots(2, 3)
xor = lambda a, b: a * (1 - b) + b * (1 - a)
diff = xor(xor(out, aug_out), xor(mask, aug_mask))
union = torch.clamp((out + aug_out + mask + aug_mask), 0, 1)
fig.suptitle(
f"Inconsistency: {metrics.sis(aug_mask, mask, aug_out, out)}")
ax[0, 0].imshow(img[0].cpu().numpy().T)
ax[0, 0].set_title("Unperturbed Image")
ax[1, 0].imshow(aug_img[0].cpu().numpy().T)
ax[1, 0].set_title("Perturbed Image")
ax[0, 1].imshow(out[0].cpu().numpy().T)
ax[0, 1].set_title("Unperturbed Output")
ax[1, 1].imshow(aug_out[0].cpu().numpy().T)
ax[1, 1].set_title("Perturbed Output")
print(ax[1, 1].get_position())
ax[0, 2].imshow(diff[0].cpu().numpy().T, cmap="viridis")
ax[0, 2].set_title("Inconsistency")
# print(ax[0, 2].get_position())
ax[0, 2].set_position([0.67, 0.34, 0.90, 0])
# ax[1, 2].imshow(intersection[0].cpu().numpy().T)
# ax[1, 2].set_title("Consistency")
for axi in ax.flatten():
axi.set_yticks([])
axi.set_xticks([])
axi.spines['top'].set_visible(False)
axi.spines['right'].set_visible(False)
axi.spines['bottom'].set_visible(False)
axi.spines['left'].set_visible(False)
plt.subplots_adjust(wspace=0.1, hspace=0.1)
plt.show()
if i == 0 and dl_idx == 0 and show_consistency_examples:
with torch.no_grad():
fig, ax = plt.subplots(ncols=3, nrows=2, figsize=(2, 2), dpi=1000,
sharex=True, sharey=True)
out, reconstruction = model(img)
img_n = img + torch.rand_like(img) / 2.5
out_n, reconstruction_n = model(img_n)
xor = lambda a, b: a * (1 - b) + b * (1 - a)
diff = xor(xor(out, aug_out), xor(mask, aug_mask))
union = torch.clamp((out + out_n), 0, 1)
ax[0, 0].imshow(img[0].cpu().numpy().T)
ax[0, 0].set_title("Unperturbed Image")
ax[1, 0].imshow(img_n[0].cpu().numpy().T)
ax[1, 0].set_title("Perturbed Image")
ax[0, 1].imshow(out[0].cpu().numpy().T)
ax[0, 1].set_title("Unperturbed Output")
ax[1, 1].imshow(out_n[0].cpu().numpy().T)
ax[1, 1].set_title("Perturbed Output")
ax[0, 2].imshow(diff[0].cpu().numpy().T)
ax[0, 2].set_title("Inconsistency")
# ax[1, 2].imshow(intersection[0].cpu().numpy().T)
# ax[1, 2].set_title("Consistency")
for axi in ax.flatten():
axi.title.set_size(3.5)
axi.set_yticks([])
axi.set_xticks([])
axi.spines['top'].set_visible(False)
axi.spines['right'].set_visible(False)
axi.spines['bottom'].set_visible(False)
axi.spines['left'].set_visible(False)
plt.subplots_adjust(wspace=0.1, hspace=0.1)
plt.savefig("consistency_examples.png")
plt.show()
# print(torch.sum(diff) / torch.sum(union))
# print(torch.sum(intersection) / torch.sum(union))
input()
if show_reconstruction and i == 0:
with torch.no_grad():
out, reconstruction = model(img)
# all_l1s[dl_idx].append(np.mean(np.mean(
# np.abs(reconstruction[0].cpu().numpy().T - x[0].cpu().numpy().T))))
# axis=-1)))
# ax[0, dl_idx].axis("off")
# ax[1, dl_idx].axis("off")
# ax[2, dl_idx].axis("off")
# ax[3, dl_idx].axis("off")
# ax[0, dl_idx].set_xlabel(self.dataset_names[dl_idx])
for i in range(4):
ax[0, i].title.set_text(self.dataset_names[i])
ax[0, i].title.set_size(8)
ax[0, 0].set_ylabel("Original", fontsize=8)
ax[1, 0].set_ylabel("Reconstruction", fontsize=8)
ax[2, 0].set_ylabel("L1", fontsize=8)
for axi in ax.flatten():
axi.set_yticks([])
axi.set_xticks([])
axi.spines['top'].set_visible(False)
axi.spines['right'].set_visible(False)
axi.spines['bottom'].set_visible(False)
axi.spines['left'].set_visible(False)
ax[0, dl_idx].imshow(x[0].cpu().numpy().T)
ax[1, dl_idx].imshow(reconstruction[0].cpu().numpy().T)
ax[2, dl_idx].imshow(
np.mean(
np.abs(reconstruction[0].cpu().numpy().T - x[0].cpu().numpy().T),
axis=-1))
# all_l1s[dl_idx].append(np.mean(
# np.mean(np.abs(reconstruction[0].cpu().numpy().T - x[0].cpu().numpy().T),
# axis=-1)))
iou = metrics.iou(out, mask)
# consistency
sis = metrics.sis(aug_mask, mask, aug_out, out)
sis_matrix[dl_idx, id - id_range[0]] += sis / len(dataloader)
mean_ious[dl_idx, id - id_range[0]] += iou / len(dataloader)
# print(
# f"{full_name} has iou {mean_ious[0, id - 1]} and consistency {sis_matrix[0, id - 1]} ")
if mean_ious[0, id - 1] < 0.8:
print(f"{full_name} has iou {mean_ious[0, id - 1]} ")
with open(f"experiments/Data/pickles/{model_name}_{eval_method}_{loss_fn}_{aug}.pkl",
"wb") as file:
pickle.dump({"ious": mean_ious, "sis": sis_matrix}, file)
class SingularEnsembleEvaluator:
def __init__(self, samples=10):
self.datasets = [
EtisDataset("Datasets/ETIS-LaribPolypDB"),
CVC_ClinicDB("Datasets/CVC-ClinicDB"),
EndoCV2020("Datasets/EndoCV2020"),
]
self.dataloaders = [
DataLoader(KvasirSegmentationDataset("Datasets/HyperKvasir", split="test"))] + \
[DataLoader(dataset) for dataset in self.datasets]
self.dataset_names = ["HyperKvasir", "Etis-LaribDB", "CVC-ClinicDB", "EndoCV2020"]
self.models = [DeepLab, FPN, InductiveNet, TriUnet, Unet]
self.model_names = ["DeepLab", "FPN", "InductiveNet", "TriUnet", "Unet"]
self.samples = samples
def get_table_data(self, model_count):
mnv = ModelOfNaturalVariation(0)
for type in ["augmentation"]:
for model_name in self.model_names:
# if model_name != "TriUnet":
# continue
print(model_name)
mean_ious = np.zeros((len(self.dataloaders), self.samples))
constituents = {}
for i in range(self.samples):
model = SingularEnsemble(model_name, type, model_count)
constituents[i] = model.get_constituents()
for dl_idx, dataloader in enumerate(self.dataloaders):
for x, y, _ in tqdm(dataloader):
img, mask = x.to("cuda"), y.to("cuda")
out = model.predict(img, threshold=True)
iou = metrics.iou(out, mask)
mean_ious[dl_idx, i] += iou / len(dataloader)
del model # avoid memory issues
print(mean_ious)
if type == "consistency":
with open(f"experiments/Data/pickles/{model_name}-ensemble-{model_count}.pkl",
"wb") as file:
pickle.dump({"ious": mean_ious, "constituents": constituents}, file)
else:
with open(f"experiments/Data/pickles/{model_name}-ensemble-{model_count}-{type}.pkl",
"wb") as file:
pickle.dump({"ious": mean_ious, "constituents": constituents}, file)
class DiverseEnsembleEvaluator:
def __init__(self, samples=10):
self.datasets = [
EtisDataset("Datasets/ETIS-LaribPolypDB"),
CVC_ClinicDB("Datasets/CVC-ClinicDB"),
EndoCV2020("Datasets/EndoCV2020"),
]
self.dataloaders = [
DataLoader(KvasirSegmentationDataset("Datasets/HyperKvasir", split="test"))] + \
[DataLoader(dataset) for dataset in self.datasets]
self.dataset_names = ["HyperKvasir", "Etis-LaribDB", "CVC-ClinicDB", "EndoCV2020"]
self.models = [DeepLab, FPN, InductiveNet, TriUnet, Unet]
self.model_names = ["DeepLab", "FPN", "InductiveNet", "TriUnet", "Unet"]
self.samples = samples
def get_table_data(self):
mnv = ModelOfNaturalVariation(0)
for type in ["augmentation"]:
mean_ious = np.zeros((len(self.dataloaders), self.samples))
constituents = {}
for i in range(1, self.samples + 1):
model = DiverseEnsemble(i, type)
constituents[i] = model.get_constituents()
for dl_idx, dataloader in enumerate(self.dataloaders):
for x, y, _ in tqdm(dataloader):
img, mask = x.to("cuda"), y.to("cuda")
out = model.predict(img)
iou = metrics.iou(out, mask)
mean_ious[dl_idx, i - 1] += iou / len(dataloader)
if mean_ious[0, i - 1] < 0.80:
print(f"{i} has iou {mean_ious[0, i - 1]}")
print(mean_ious)
with open(f"experiments/Data/pickles/diverse-ensemble-{type}.pkl",
"wb") as file:
pickle.dump({"ious": mean_ious, "constituents": constituents}, file)
def write_to_latex_table(pkl_file):
table_template = open("table_template").read()
if __name__ == '__main__':
np.set_printoptions(precision=3, suppress=True)
evaluator = ModelEvaluator()
evaluator.get_table_data(np.arange(0, 10), np.arange(1, 11), show_reconstruction=False,
show_consistency_examples=False)
# evaluator = DiverseEnsembleEvaluator(samples=10)
# evaluator.get_table_data()
# evaluator = SingularEnsembleEvaluator()
# evaluator.get_table_data(5)
#
# get_metrics_for_experiment("Augmented", "consistency_1")