from os import listdir
from os.path import join
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def get_predictorwise_distribution(experiment_path):
mean_ious = []
for experiment in listdir(experiment_path):
# mean_ious.append(np.load(join(experiment_path, experiment))) #cool
mean_ious.append(np.mean(np.load(join(experiment_path, experiment))))
plt.hist(mean_ious, bins=np.linspace(min(mean_ious), max(mean_ious), 25))
plt.show()
def get_datawise_distribution(experiment_path):
mean_ious = []
for experiment in listdir(experiment_path):
# mean_ious.append(np.load(join(experiment_path, experiment))) #cool
mean_ious = np.concatenate((mean_ious, np.mean(np.load(join(experiment_path, experiment)))))
plt.hist(mean_ious, bins=np.linspace(min(mean_ious), max(mean_ious), 25))
plt.show()
def plot_training_progression(csv_name):
df = pd.read_csv(csv_name)
plt.plot(df["epoch"], df["iid_test_iou"], label="IID")
plt.plot(df["epoch"], df["ood_iou"], label="OOD")
plt.plot(df["epoch"], df["iid_test_iou"] - df["ood_iou"], label="Diff")
plt.legend()
plt.ylim((0, 1))
plt.xlim((0, 250))
plt.show()
if __name__ == '__main__':
plot_training_progression("logs/consistency/DeepLab/0.csv")
plot_training_progression("logs/consistency/DeepLab/1.csv")
# df_iid = df["Augmented" not in df["name"]]
# get_predictorwise_distribution("experiments/Data/Normal-Pipelines/DeepLab")