begin{tabularx}{linewidth}{lllr} \toprule \multicolumn{4}{c}{\textbf{Kvasir-SEG}}\\ \toprule No Augmentation & Conventional Augmentation & Consistency Training\\ \midrule DeepLab & 0.819& 0.853& 0.853 \\ FPN & 0.823& 0.852& 0.851 \\ InductiveNet & 0.832& 0.847& 0.853 \\ TriUnet & 0.822& 0.844& 0.845 \\ Unet & 0.828& 0.851& 0.851 \\ \toprule \multicolumn{4}{c}{\textbf{Etis-LaribDB}}\\ \toprule No Augmentation & Conventional Augmentation & Consistency Training\\ \midrule DeepLab & 0.412& 0.468& 0.504 \\ FPN & 0.404& 0.440& 0.471 \\ InductiveNet & 0.406& 0.469& 0.478 \\ TriUnet & 0.305& 0.419& 0.439 \\ Unet & 0.403& 0.454& 0.482 \\ \toprule \multicolumn{4}{c}{\textbf{CVC-ClinicDB}}\\ \toprule No Augmentation & Conventional Augmentation & Consistency Training\\ \midrule DeepLab & 0.678& 0.736& 0.740 \\ FPN & 0.678& 0.717& 0.726 \\ InductiveNet & 0.683& 0.733& 0.737 \\ TriUnet & 0.633& 0.695& 0.699 \\ Unet & 0.679& 0.720& 0.729 \\ \multicolumn{4}{c}{\textbf{EndoCV2020}}\\ No Augmentation & Conventional Augmentation & Consistency Training\\ \midrule DeepLab & 0.604& 0.677& 0.678 \\ FPN & 0.605& 0.663& 0.674 \\ InductiveNet & 0.595& 0.667& 0.672 \\ TriUnet & 0.581& 0.673& 0.686 \\ Unet & 0.599& 0.660& 0.677 \\ \bottomrule end{tabularx}