|
a |
|
b/training/train_inpainter.py |
|
|
1 |
import matplotlib.pyplot as plt |
|
|
2 |
import numpy as np |
|
|
3 |
import torch |
|
|
4 |
import torch.nn |
|
|
5 |
import torchvision.transforms as transforms |
|
|
6 |
from PIL import Image |
|
|
7 |
from torch.autograd import Variable |
|
|
8 |
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts |
|
|
9 |
from torch.utils.data import DataLoader |
|
|
10 |
|
|
|
11 |
from data.hyperkvasir import KvasirInpaintingDataset |
|
|
12 |
from models.inpainters import SegGenerator, SegDiscriminator |
|
|
13 |
from perturbation.polyp_inpainter import Inpainter |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
# TODO refactor |
|
|
17 |
|
|
|
18 |
def weights_init_normal(m): |
|
|
19 |
classname = m.__class__.__name__ |
|
|
20 |
if classname.find("Conv") != -1: |
|
|
21 |
torch.nn.init.normal_(m.weight.data, 0.0, 0.02) |
|
|
22 |
elif classname.find("BatchNorm2d") != -1: |
|
|
23 |
torch.nn.init.normal_(m.weight.data, 1.0, 0.02) |
|
|
24 |
torch.nn.init.constant_(m.bias.data, 0.0) |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
def train_new_inpainter(): |
|
|
28 |
# Loss function |
|
|
29 |
adversarial_loss = torch.nn.BCELoss() |
|
|
30 |
pixelwise_loss = torch.nn.L1Loss() |
|
|
31 |
|
|
|
32 |
# Initialize generator and discriminator |
|
|
33 |
# generator = Generator(channels=3) |
|
|
34 |
# discriminator = Discriminator(channels=3) |
|
|
35 |
generator = SegGenerator() |
|
|
36 |
discriminator = SegDiscriminator() |
|
|
37 |
|
|
|
38 |
generator.load_state_dict(torch.load("Predictors/Inpainters/no-pretrain-deeplab-generator-940")) |
|
|
39 |
discriminator.load_state_dict(torch.load("Predictors/Inpainters/no-pretrain-deeplab-discriminator-940")) |
|
|
40 |
|
|
|
41 |
cuda = True |
|
|
42 |
if cuda: |
|
|
43 |
generator.cuda() |
|
|
44 |
discriminator.cuda() |
|
|
45 |
adversarial_loss.cuda() |
|
|
46 |
pixelwise_loss.cuda() |
|
|
47 |
# Dataset loader TODO refactor w/ albumentation library |
|
|
48 |
transforms_ = [ |
|
|
49 |
transforms.Resize((400, 400), Image.BICUBIC), |
|
|
50 |
transforms.ToTensor(), |
|
|
51 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
|
52 |
] |
|
|
53 |
dataloader = DataLoader( |
|
|
54 |
KvasirInpaintingDataset("Datasets/HyperKvasir"), |
|
|
55 |
batch_size=8, |
|
|
56 |
shuffle=False, |
|
|
57 |
num_workers=1, |
|
|
58 |
) |
|
|
59 |
# test_dataloader = DataLoader( |
|
|
60 |
# EtisDataset("Datasets/ETIS-LaribPolypDB"), |
|
|
61 |
# batch_size=12, |
|
|
62 |
# shuffle=True, |
|
|
63 |
# num_workers=1, |
|
|
64 |
# ) |
|
|
65 |
|
|
|
66 |
# Optimizers |
|
|
67 |
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0001) |
|
|
68 |
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.00001) |
|
|
69 |
scheduler_G = CosineAnnealingWarmRestarts(optimizer_G, T_0=100, T_mult=2) |
|
|
70 |
scheduler_D = CosineAnnealingWarmRestarts(optimizer_D, T_0=100, T_mult=2) |
|
|
71 |
|
|
|
72 |
# Initialize weights |
|
|
73 |
# generator.apply(weights_init_normal) |
|
|
74 |
# discriminator.apply(weights_init_normal) |
|
|
75 |
# patch_h, patch_w = int(50 / 2 ** 3), int(50 / 2 ** 3) |
|
|
76 |
# patch = (1, patch_h, patch_w) |
|
|
77 |
# print(patch) |
|
|
78 |
for epoch in range(990, 5000): |
|
|
79 |
printed = False |
|
|
80 |
d_losses = [] |
|
|
81 |
g_advs = [] |
|
|
82 |
g_pixels = [] |
|
|
83 |
|
|
|
84 |
for i, (imgs, mask, masked_imgs, masked_parts, filename) in enumerate(dataloader): |
|
|
85 |
imgs = imgs.cuda() |
|
|
86 |
mask = mask.cuda() |
|
|
87 |
masked_imgs = masked_imgs.cuda() |
|
|
88 |
masked_parts = masked_parts.cuda() |
|
|
89 |
mask_bool = mask == 1 |
|
|
90 |
# Adversarial ground truths (boxes) |
|
|
91 |
# valid = Variable(torch.Tensor(imgs.shape[0], *patch).fill_(1.0), requires_grad=False) |
|
|
92 |
# fake = Variable(torch.Tensor(imgs.shape[0], *patch).fill_(0.0), requires_grad=False) |
|
|
93 |
valid = torch.masked_select(torch.ones_like(mask), mask_bool) |
|
|
94 |
fake = torch.masked_select(torch.zeros_like(mask), mask_bool) |
|
|
95 |
|
|
|
96 |
# Configure input |
|
|
97 |
imgs = Variable(imgs) |
|
|
98 |
masked_imgs = Variable(masked_imgs) |
|
|
99 |
masked_parts = Variable(masked_parts) |
|
|
100 |
|
|
|
101 |
# ----------------- |
|
|
102 |
# Train Generator |
|
|
103 |
# ----------------- |
|
|
104 |
|
|
|
105 |
optimizer_G.zero_grad() |
|
|
106 |
|
|
|
107 |
# Generate a batch of images |
|
|
108 |
gen_parts = generator(masked_imgs) |
|
|
109 |
|
|
|
110 |
# Adversarial and pixelwise loss |
|
|
111 |
disc = discriminator(gen_parts) |
|
|
112 |
# print(disc) |
|
|
113 |
|
|
|
114 |
g_adv = adversarial_loss(torch.masked_select(disc, mask_bool), valid) |
|
|
115 |
g_pixel = pixelwise_loss(torch.masked_select(gen_parts, mask_bool), torch.masked_select(imgs, mask_bool)) |
|
|
116 |
g_advs.append(g_adv.item()) |
|
|
117 |
g_pixels.append(g_pixel.item()) |
|
|
118 |
# Total loss |
|
|
119 |
g_loss = 0.001 * g_adv + 0.999 * g_pixel |
|
|
120 |
|
|
|
121 |
g_loss.backward() |
|
|
122 |
optimizer_G.step() |
|
|
123 |
scheduler_G.step(epoch) |
|
|
124 |
|
|
|
125 |
# --------------------- |
|
|
126 |
# Train Discriminator |
|
|
127 |
# --------------------- |
|
|
128 |
|
|
|
129 |
optimizer_D.zero_grad() |
|
|
130 |
|
|
|
131 |
# Measure discriminator's ability to classify real from generated samples |
|
|
132 |
|
|
|
133 |
real_loss = adversarial_loss(torch.masked_select(discriminator(masked_parts), mask_bool), valid) |
|
|
134 |
fake_loss = adversarial_loss(torch.masked_select(discriminator(gen_parts.detach()), mask_bool), fake) |
|
|
135 |
d_loss = 0.5 * (real_loss + fake_loss) |
|
|
136 |
d_losses.append(d_loss.item()) |
|
|
137 |
# wasserstein critic loss |
|
|
138 |
|
|
|
139 |
# d_loss = -torch.mean(discriminator(masked_parts)) + torch.mean(discriminator(gen_parts.detach())) |
|
|
140 |
|
|
|
141 |
d_loss.backward() |
|
|
142 |
optimizer_D.step() |
|
|
143 |
scheduler_D.step(epoch) |
|
|
144 |
if not printed and epoch % 10 == 0: |
|
|
145 |
torch.save(generator.state_dict(), f"Predictors/Inpainters/no-pretrain-deeplab-generator-{epoch}") |
|
|
146 |
torch.save(discriminator.state_dict(), |
|
|
147 |
f"Predictors/Inpainters/no-pretrain-deeplab-discriminator-{epoch}") |
|
|
148 |
plt.title("Part") |
|
|
149 |
plt.imshow((gen_parts[0].detach().cpu().numpy().T)) |
|
|
150 |
plt.show() |
|
|
151 |
# plt.title("Superimposed") |
|
|
152 |
# plt.imshow((gen_parts[0].detach().cpu().numpy().T)) |
|
|
153 |
# plt.imshow(masked_imgs[0].detach().cpu().numpy().T) |
|
|
154 |
# plt.show() |
|
|
155 |
# plt.title("Real") |
|
|
156 |
# plt.imshow(masked_parts[0].detach().cpu().numpy().T) |
|
|
157 |
# plt.show() |
|
|
158 |
try: |
|
|
159 |
test = Inpainter(f"Predictors/Inpainters/no-pretrain-deeplab-generator-{epoch}") |
|
|
160 |
test.get_test() |
|
|
161 |
except FileNotFoundError: |
|
|
162 |
print("Weird...") |
|
|
163 |
printed = True |
|
|
164 |
print( |
|
|
165 |
f"[Epoch {epoch}] [D loss: {np.mean(d_losses)}] [G adv: {np.mean(g_advs)}, pixel: {np.mean(g_pixels)}]" |
|
|
166 |
) |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
if __name__ == '__main__': |
|
|
170 |
train_new_inpainter() |