Switch to side-by-side view

--- a
+++ b/training/consistency_trainers.py
@@ -0,0 +1,230 @@
+import matplotlib.pyplot as plt
+import numpy as np
+import torch.optim.optimizer
+from torch.utils.data import DataLoader
+from tqdm import tqdm
+from data.hyperkvasir import KvasirSegmentationDataset, KvasirMNVset
+from evaluation.metrics import iou
+from losses.consistency_losses import *
+from perturbation.model import ModelOfNaturalVariation
+from training.vanilla_trainer import VanillaTrainer
+from utils import logging
+from models.ensembles import TrainedEnsemble
+
+
+class ConsistencyTrainer(VanillaTrainer):
+    def __init__(self, id, config):
+        super(ConsistencyTrainer, self).__init__(id, config)
+        self.criterion = ConsistencyLoss().to(self.device)
+        self.nakedcloss = NakedConsistencyLoss()
+
+    def train_epoch(self):
+        self.model.train()
+        losses = []
+        for x, y, fname in self.train_loader:
+            image = x.to("cuda")
+            mask = y.to("cuda")
+            aug_img, aug_mask = self.mnv(image, mask)
+            self.optimizer.zero_grad()
+            output = self.model(image)
+            aug_output = self.model(aug_img)
+            mean_iou = torch.mean(iou(output, mask))
+            loss = self.criterion(aug_mask, mask, aug_output, output, mean_iou)
+            loss.backward()
+            self.optimizer.step()
+            losses.append(np.abs(loss.item()))
+        return np.mean(losses)
+
+    def train(self):
+
+        best_val_loss = 1000
+        best_consistency = 0
+        print("Starting Segmentation training")
+        for i in range(self.epochs):
+            training_loss = np.abs(self.train_epoch())
+            val_loss, ious, closs = self.validate(epoch=i, plot=False)
+            gen_ious = self.validate_generalizability(epoch=i, plot=False)
+            mean_iou = float(torch.mean(ious))
+            gen_iou = float(torch.mean(gen_ious))
+            consistency = 1 - np.mean(closs)
+            test_iou = np.mean(self.test().numpy())
+
+            self.config["lr"] = [group['lr'] for group in self.optimizer.param_groups]
+            logging.log_full(epoch=i, id=self.id, config=self.config, result_dict=
+            {"train_loss": training_loss, "val_loss": val_loss,
+             "iid_val_iou": mean_iou, "iid_test_iou": test_iou, "ood_iou": gen_iou,
+             "consistency": consistency}, type="consistency")
+
+            self.scheduler.step(i)
+            # self.mnv.step()
+            print(
+                f"Epoch {i} of {self.epochs} \t"
+                f" lr={[group['lr'] for group in self.optimizer.param_groups]} \t"
+                f" loss={training_loss} \t"
+                f" val_loss={val_loss} \t"
+                f" ood_iou={gen_iou}\t"
+                f" val_iou={mean_iou} \t"
+                f" gen_prop={gen_iou / mean_iou} \t,"
+                f" consistency={consistency}"
+            )
+
+            if val_loss < best_val_loss:
+                best_val_loss = val_loss
+                np.save(
+                    f"experiments/Data/Augmented-Pipelines/{self.model_str}/{self.id}",
+                    test_iou)
+                print(f"Saving new best model. IID test-set mean iou: {test_iou}")
+                torch.save(self.model.state_dict(),
+                           f"Predictors/Augmented/{self.model_str}/{self.id}")
+                print("saved in: ", f"Predictors/Augmented/{self.model_str}/{self.id}")
+
+            if consistency > best_consistency:
+                best_consistency = consistency
+                torch.save(self.model.state_dict(),
+                           f"Predictors/Augmented/{self.model_str}/maximum_consistency{self.id}")
+        torch.save(self.model.state_dict(),
+                   f"Predictors/Augmented/{self.model_str}/{self.id}_last_epoch")
+
+    def test(self):
+        self.model.eval()
+        ious = torch.empty((0,))
+        with torch.no_grad():
+            for x, y, fname in self.test_loader:
+                image = x.to("cuda")
+                mask = y.to("cuda")
+                output = self.model(image)
+                batch_ious = torch.Tensor([iou(output_i, mask_j) for output_i, mask_j in zip(output, mask)])
+                ious = torch.cat((ious, batch_ious.flatten()))
+        return ious
+
+
+class ConsistencyTrainerUsingAugmentation(ConsistencyTrainer):
+    """
+        Uses vanilla data augmentation with p=0.5 instead of a a custom loss
+    """
+
+    def __init__(self, id, config):
+        super(ConsistencyTrainerUsingAugmentation, self).__init__(id, config)
+        self.jaccard = vanilla_losses.JaccardLoss()
+        self.prob = 0
+        self.dataset = KvasirMNVset("Datasets/HyperKvasir", "train", inpaint=config["use_inpainter"])
+        self.train_loader = DataLoader(self.dataset, batch_size=config["batch_size"], shuffle=True)
+
+    def get_iou_weights(self, image, mask):
+        self.model.eval()
+        with torch.no_grad():
+            output = self.model(image)
+        return torch.mean(iou(output, mask))
+
+    def get_consistency(self, image, mask, augmented, augmask):
+        self.model.eval()
+        with torch.no_grad():
+            output = self.model(image)
+        self.model.train()
+        return torch.mean(self.nakedcloss(output, mask, augmented, augmask))
+
+    def train_epoch(self):
+        self.model.train()
+        losses = []
+        plotted = False
+        for x, y, fname, flag in self.train_loader:
+            image = x.to("cuda")
+            mask = y.to("cuda")
+            self.optimizer.zero_grad()
+            output = self.model(image)
+            loss = self.jaccard(output, mask)
+            loss.backward()
+            self.optimizer.step()
+            losses.append(np.abs(loss.item()))
+        return np.mean(losses)
+
+
+class AdversarialConsistencyTrainer(ConsistencyTrainer):
+    """
+        Adversariall samples difficult
+    """
+
+    def __init__(self, id, config):
+        super(ConsistencyTrainer, self).__init__(id, config)
+        self.mnv = ModelOfNaturalVariation(T0=1).to(self.device)
+        self.num_adv_samples = 10
+        self.naked_closs = NakedConsistencyLoss()
+        self.criterion = ConsistencyLoss().to(self.device)
+
+    def sample_adversarial(self, image, mask, output):
+        self.model.eval()
+        aug_img, aug_mask = None, None  #
+        max_severity = -10
+        with torch.no_grad():
+            for i in range(self.num_adv_samples):
+                adv_aug_img, adv_aug_mask = self.mnv(image, mask)
+                adv_aug_output = self.model(adv_aug_img)
+                severity = self.naked_closs(adv_aug_mask, mask, adv_aug_output, output)
+
+                if severity > max_severity:
+                    max_severity = severity
+                    aug_img = adv_aug_img
+                    aug_mask = adv_aug_mask
+        self.model.train()
+        return aug_img, aug_mask
+
+    def train_epoch(self):
+        self.model.train()
+        losses = []
+        for x, y, fname in self.train_loader:
+            image = x.to("cuda")
+            mask = y.to("cuda")
+            self.optimizer.zero_grad()
+            output = self.model(image)
+            aug_img, aug_mask = self.sample_adversarial(image, mask, output)
+            # aug_img, aug_mask = self.mnv(image, mask)
+            aug_output = self.model(aug_img)
+            mean_iou = torch.mean(iou(output, mask))
+            loss = self.criterion(aug_mask, mask, aug_output, output, mean_iou)
+            loss.backward()
+            self.optimizer.step()
+            losses.append(np.abs(loss.item()))
+        return np.mean(losses)
+
+
+class StrictConsistencyTrainer(ConsistencyTrainer):
+    def __init__(self, id, config):
+        super(StrictConsistencyTrainer, self).__init__(id, config)
+        self.criterion = StrictConsistencyLoss()
+
+
+class ConsistencyTrainerUsingControlledAugmentation(ConsistencyTrainer):
+    """
+        Uses vanilla data augmentation with p=0.5 instead of a a custom loss and has two samples
+    """
+
+    def __init__(self, id, config):
+        super(ConsistencyTrainerUsingControlledAugmentation, self).__init__(id, config)
+        self.jaccard = vanilla_losses.JaccardLoss()
+        self.mnv = ModelOfNaturalVariation(1)
+
+    def train_epoch(self):
+        self.model.train()
+        losses = []
+        plotted = False
+        for x, y, fname in self.train_loader:
+            image = x.to("cuda")
+            mask = y.to("cuda")
+            aug_img, aug_mask = self.mnv(image, mask)
+            img_batch = torch.cat((image, aug_img))
+            mask_batch = torch.cat((mask, aug_mask))
+            self.optimizer.zero_grad()
+            output = self.model(img_batch)
+            loss = self.jaccard(output, mask_batch)
+            loss.backward()
+            self.optimizer.step()
+            losses.append(np.abs(loss.item()))
+        return np.mean(losses)
+
+
+class EnsembleConsistencyTrainer(ConsistencyTrainer):
+    def __init__(self, id, config):
+        super(EnsembleConsistencyTrainer, self).__init__(id, config)
+        self.model = TrainedEnsemble("Singular")
+        self.optimizer = torch.optim.Adam(self.model.parameters(), self.lr)
+        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer, T_0=50, T_mult=2)