--- a +++ b/training/consistency_trainers.py @@ -0,0 +1,230 @@ +import matplotlib.pyplot as plt +import numpy as np +import torch.optim.optimizer +from torch.utils.data import DataLoader +from tqdm import tqdm +from data.hyperkvasir import KvasirSegmentationDataset, KvasirMNVset +from evaluation.metrics import iou +from losses.consistency_losses import * +from perturbation.model import ModelOfNaturalVariation +from training.vanilla_trainer import VanillaTrainer +from utils import logging +from models.ensembles import TrainedEnsemble + + +class ConsistencyTrainer(VanillaTrainer): + def __init__(self, id, config): + super(ConsistencyTrainer, self).__init__(id, config) + self.criterion = ConsistencyLoss().to(self.device) + self.nakedcloss = NakedConsistencyLoss() + + def train_epoch(self): + self.model.train() + losses = [] + for x, y, fname in self.train_loader: + image = x.to("cuda") + mask = y.to("cuda") + aug_img, aug_mask = self.mnv(image, mask) + self.optimizer.zero_grad() + output = self.model(image) + aug_output = self.model(aug_img) + mean_iou = torch.mean(iou(output, mask)) + loss = self.criterion(aug_mask, mask, aug_output, output, mean_iou) + loss.backward() + self.optimizer.step() + losses.append(np.abs(loss.item())) + return np.mean(losses) + + def train(self): + + best_val_loss = 1000 + best_consistency = 0 + print("Starting Segmentation training") + for i in range(self.epochs): + training_loss = np.abs(self.train_epoch()) + val_loss, ious, closs = self.validate(epoch=i, plot=False) + gen_ious = self.validate_generalizability(epoch=i, plot=False) + mean_iou = float(torch.mean(ious)) + gen_iou = float(torch.mean(gen_ious)) + consistency = 1 - np.mean(closs) + test_iou = np.mean(self.test().numpy()) + + self.config["lr"] = [group['lr'] for group in self.optimizer.param_groups] + logging.log_full(epoch=i, id=self.id, config=self.config, result_dict= + {"train_loss": training_loss, "val_loss": val_loss, + "iid_val_iou": mean_iou, "iid_test_iou": test_iou, "ood_iou": gen_iou, + "consistency": consistency}, type="consistency") + + self.scheduler.step(i) + # self.mnv.step() + print( + f"Epoch {i} of {self.epochs} \t" + f" lr={[group['lr'] for group in self.optimizer.param_groups]} \t" + f" loss={training_loss} \t" + f" val_loss={val_loss} \t" + f" ood_iou={gen_iou}\t" + f" val_iou={mean_iou} \t" + f" gen_prop={gen_iou / mean_iou} \t," + f" consistency={consistency}" + ) + + if val_loss < best_val_loss: + best_val_loss = val_loss + np.save( + f"experiments/Data/Augmented-Pipelines/{self.model_str}/{self.id}", + test_iou) + print(f"Saving new best model. IID test-set mean iou: {test_iou}") + torch.save(self.model.state_dict(), + f"Predictors/Augmented/{self.model_str}/{self.id}") + print("saved in: ", f"Predictors/Augmented/{self.model_str}/{self.id}") + + if consistency > best_consistency: + best_consistency = consistency + torch.save(self.model.state_dict(), + f"Predictors/Augmented/{self.model_str}/maximum_consistency{self.id}") + torch.save(self.model.state_dict(), + f"Predictors/Augmented/{self.model_str}/{self.id}_last_epoch") + + def test(self): + self.model.eval() + ious = torch.empty((0,)) + with torch.no_grad(): + for x, y, fname in self.test_loader: + image = x.to("cuda") + mask = y.to("cuda") + output = self.model(image) + batch_ious = torch.Tensor([iou(output_i, mask_j) for output_i, mask_j in zip(output, mask)]) + ious = torch.cat((ious, batch_ious.flatten())) + return ious + + +class ConsistencyTrainerUsingAugmentation(ConsistencyTrainer): + """ + Uses vanilla data augmentation with p=0.5 instead of a a custom loss + """ + + def __init__(self, id, config): + super(ConsistencyTrainerUsingAugmentation, self).__init__(id, config) + self.jaccard = vanilla_losses.JaccardLoss() + self.prob = 0 + self.dataset = KvasirMNVset("Datasets/HyperKvasir", "train", inpaint=config["use_inpainter"]) + self.train_loader = DataLoader(self.dataset, batch_size=config["batch_size"], shuffle=True) + + def get_iou_weights(self, image, mask): + self.model.eval() + with torch.no_grad(): + output = self.model(image) + return torch.mean(iou(output, mask)) + + def get_consistency(self, image, mask, augmented, augmask): + self.model.eval() + with torch.no_grad(): + output = self.model(image) + self.model.train() + return torch.mean(self.nakedcloss(output, mask, augmented, augmask)) + + def train_epoch(self): + self.model.train() + losses = [] + plotted = False + for x, y, fname, flag in self.train_loader: + image = x.to("cuda") + mask = y.to("cuda") + self.optimizer.zero_grad() + output = self.model(image) + loss = self.jaccard(output, mask) + loss.backward() + self.optimizer.step() + losses.append(np.abs(loss.item())) + return np.mean(losses) + + +class AdversarialConsistencyTrainer(ConsistencyTrainer): + """ + Adversariall samples difficult + """ + + def __init__(self, id, config): + super(ConsistencyTrainer, self).__init__(id, config) + self.mnv = ModelOfNaturalVariation(T0=1).to(self.device) + self.num_adv_samples = 10 + self.naked_closs = NakedConsistencyLoss() + self.criterion = ConsistencyLoss().to(self.device) + + def sample_adversarial(self, image, mask, output): + self.model.eval() + aug_img, aug_mask = None, None # + max_severity = -10 + with torch.no_grad(): + for i in range(self.num_adv_samples): + adv_aug_img, adv_aug_mask = self.mnv(image, mask) + adv_aug_output = self.model(adv_aug_img) + severity = self.naked_closs(adv_aug_mask, mask, adv_aug_output, output) + + if severity > max_severity: + max_severity = severity + aug_img = adv_aug_img + aug_mask = adv_aug_mask + self.model.train() + return aug_img, aug_mask + + def train_epoch(self): + self.model.train() + losses = [] + for x, y, fname in self.train_loader: + image = x.to("cuda") + mask = y.to("cuda") + self.optimizer.zero_grad() + output = self.model(image) + aug_img, aug_mask = self.sample_adversarial(image, mask, output) + # aug_img, aug_mask = self.mnv(image, mask) + aug_output = self.model(aug_img) + mean_iou = torch.mean(iou(output, mask)) + loss = self.criterion(aug_mask, mask, aug_output, output, mean_iou) + loss.backward() + self.optimizer.step() + losses.append(np.abs(loss.item())) + return np.mean(losses) + + +class StrictConsistencyTrainer(ConsistencyTrainer): + def __init__(self, id, config): + super(StrictConsistencyTrainer, self).__init__(id, config) + self.criterion = StrictConsistencyLoss() + + +class ConsistencyTrainerUsingControlledAugmentation(ConsistencyTrainer): + """ + Uses vanilla data augmentation with p=0.5 instead of a a custom loss and has two samples + """ + + def __init__(self, id, config): + super(ConsistencyTrainerUsingControlledAugmentation, self).__init__(id, config) + self.jaccard = vanilla_losses.JaccardLoss() + self.mnv = ModelOfNaturalVariation(1) + + def train_epoch(self): + self.model.train() + losses = [] + plotted = False + for x, y, fname in self.train_loader: + image = x.to("cuda") + mask = y.to("cuda") + aug_img, aug_mask = self.mnv(image, mask) + img_batch = torch.cat((image, aug_img)) + mask_batch = torch.cat((mask, aug_mask)) + self.optimizer.zero_grad() + output = self.model(img_batch) + loss = self.jaccard(output, mask_batch) + loss.backward() + self.optimizer.step() + losses.append(np.abs(loss.item())) + return np.mean(losses) + + +class EnsembleConsistencyTrainer(ConsistencyTrainer): + def __init__(self, id, config): + super(EnsembleConsistencyTrainer, self).__init__(id, config) + self.model = TrainedEnsemble("Singular") + self.optimizer = torch.optim.Adam(self.model.parameters(), self.lr) + self.scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(self.optimizer, T_0=50, T_mult=2)