a b/inpainting/options/train_options.py
1
import argparse
2
import os
3
import time
4
5
class TrainOptions:
6
    def __init__(self):
7
        self.parser = argparse.ArgumentParser()
8
        self.initialized = False
9
10
    def initialize(self):
11
        # experiment specifics
12
        self.parser.add_argument('--dataset', type=str, default='paris_streetview',
13
                                 help='dataset of the experiment.')
14
        self.parser.add_argument('--data_file', type=str, default='', help='the file storing training image paths')
15
        self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0  0,1,2')
16
        self.parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints', help='models are saved here')
17
        self.parser.add_argument('--load_model_dir', type=str, default='', help='pretrained models are given here')
18
        self.parser.add_argument('--phase', type=str, default='train')
19
20
        # input/output sizes
21
        self.parser.add_argument('--batch_size', type=int, default=16, help='input batch size')
22
23
        # for setting inputs
24
        self.parser.add_argument('--random_crop', type=int, default=1,
25
                                 help='using random crop to process input image when '
26
                                      'the required size is smaller than the given size')
27
        self.parser.add_argument('--random_mask', type=int, default=1)
28
        self.parser.add_argument('--mask_type', type=str, default='rect')
29
        self.parser.add_argument('--pretrain_network', type=int, default=0)
30
        self.parser.add_argument('--lambda_adv', type=float, default=1e-3)
31
        self.parser.add_argument('--lambda_rec', type=float, default=1.4)
32
        self.parser.add_argument('--lambda_ae', type=float, default=1.2)
33
        self.parser.add_argument('--lambda_mrf', type=float, default=0.05)
34
        self.parser.add_argument('--lambda_gp', type=float, default=10)
35
        self.parser.add_argument('--random_seed', type=bool, default=False)
36
        self.parser.add_argument('--padding', type=str, default='SAME')
37
        self.parser.add_argument('--D_max_iters', type=int, default=5)
38
        self.parser.add_argument('--lr', type=float, default=1e-5, help='learning rate for training')
39
40
        self.parser.add_argument('--train_spe', type=int, default=1000)
41
        self.parser.add_argument('--epochs', type=int, default=40)
42
        self.parser.add_argument('--viz_steps', type=int, default=5)
43
        self.parser.add_argument('--spectral_norm', type=int, default=1)
44
45
        self.parser.add_argument('--img_shapes', type=str, default='256,256,3',
46
                                 help='given shape parameters: h,w,c or h,w')
47
        self.parser.add_argument('--mask_shapes', type=str, default='128,128',
48
                                 help='given mask parameters: h,w')
49
        self.parser.add_argument('--max_delta_shapes', type=str, default='32,32')
50
        self.parser.add_argument('--margins', type=str, default='0,0')
51
52
53
        # for generator
54
        self.parser.add_argument('--g_cnum', type=int, default=32,
55
                                 help='# of generator filters in first conv layer')
56
        self.parser.add_argument('--d_cnum', type=int, default=64,
57
                                 help='# of discriminator filters in first conv layer')
58
59
        # for id-mrf computation
60
        self.parser.add_argument('--vgg19_path', type=str, default='vgg19_weights/imagenet-vgg-verydeep-19.mat')
61
        # for instance-wise features
62
        self.initialized = True
63
64
    def parse(self):
65
        if not self.initialized:
66
            self.initialize()
67
        self.opt = self.parser.parse_args()
68
69
        self.opt.dataset_path = self.opt.data_file
70
71
        str_ids = self.opt.gpu_ids.split(',')
72
        self.opt.gpu_ids = []
73
        for str_id in str_ids:
74
            id = int(str_id)
75
            if id >= 0:
76
                self.opt.gpu_ids.append(str(id))
77
78
        assert self.opt.random_crop in [0, 1]
79
        self.opt.random_crop = True if self.opt.random_crop == 1 else False
80
81
        assert self.opt.random_mask in [0, 1]
82
        self.opt.random_mask = True if self.opt.random_mask == 1 else False
83
84
        assert self.opt.pretrain_network in [0, 1]
85
        self.opt.pretrain_network = True if self.opt.pretrain_network == 1 else False
86
87
        assert self.opt.spectral_norm in [0, 1]
88
        self.opt.spectral_norm = True if self.opt.spectral_norm == 1 else False
89
90
        assert self.opt.padding in ['SAME', 'MIRROR']
91
92
        assert self.opt.mask_type in ['rect', 'stroke']
93
94
        str_img_shapes = self.opt.img_shapes.split(',')
95
        self.opt.img_shapes = [int(x) for x in str_img_shapes]
96
97
        str_mask_shapes = self.opt.mask_shapes.split(',')
98
        self.opt.mask_shapes = [int(x) for x in str_mask_shapes]
99
100
        str_max_delta_shapes = self.opt.max_delta_shapes.split(',')
101
        self.opt.max_delta_shapes = [int(x) for x in str_max_delta_shapes]
102
103
        str_margins = self.opt.margins.split(',')
104
        self.opt.margins = [int(x) for x in str_margins]
105
106
        # model name and date
107
        self.opt.date_str = time.strftime('%Y%m%d-%H%M%S')
108
        self.opt.model_name = 'GMCNN'
109
        self.opt.model_folder = self.opt.date_str + '_' + self.opt.model_name
110
        self.opt.model_folder += '_' + self.opt.dataset
111
        self.opt.model_folder += '_b' + str(self.opt.batch_size)
112
        self.opt.model_folder += '_s' + str(self.opt.img_shapes[0]) + 'x' + str(self.opt.img_shapes[1])
113
        self.opt.model_folder += '_gc' + str(self.opt.g_cnum)
114
        self.opt.model_folder += '_dc' + str(self.opt.d_cnum)
115
116
        self.opt.model_folder += '_randmask-' + self.opt.mask_type if self.opt.random_mask else ''
117
        self.opt.model_folder += '_pretrain' if self.opt.pretrain_network else ''
118
119
        if os.path.isdir(self.opt.checkpoint_dir) is False:
120
            os.mkdir(self.opt.checkpoint_dir)
121
122
        self.opt.model_folder = os.path.join(self.opt.checkpoint_dir, self.opt.model_folder)
123
        if os.path.isdir(self.opt.model_folder) is False:
124
            os.mkdir(self.opt.model_folder)
125
126
        # set gpu ids
127
        if len(self.opt.gpu_ids) > 0:
128
            os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(self.opt.gpu_ids)
129
130
        args = vars(self.opt)
131
132
        print('------------ Options -------------')
133
        for k, v in sorted(args.items()):
134
            print('%s: %s' % (str(k), str(v)))
135
        print('-------------- End ----------------')
136
137
        return self.opt