|
a |
|
b/inpainting/options/train_options.py |
|
|
1 |
import argparse |
|
|
2 |
import os |
|
|
3 |
import time |
|
|
4 |
|
|
|
5 |
class TrainOptions: |
|
|
6 |
def __init__(self): |
|
|
7 |
self.parser = argparse.ArgumentParser() |
|
|
8 |
self.initialized = False |
|
|
9 |
|
|
|
10 |
def initialize(self): |
|
|
11 |
# experiment specifics |
|
|
12 |
self.parser.add_argument('--dataset', type=str, default='paris_streetview', |
|
|
13 |
help='dataset of the experiment.') |
|
|
14 |
self.parser.add_argument('--data_file', type=str, default='', help='the file storing training image paths') |
|
|
15 |
self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2') |
|
|
16 |
self.parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints', help='models are saved here') |
|
|
17 |
self.parser.add_argument('--load_model_dir', type=str, default='', help='pretrained models are given here') |
|
|
18 |
self.parser.add_argument('--phase', type=str, default='train') |
|
|
19 |
|
|
|
20 |
# input/output sizes |
|
|
21 |
self.parser.add_argument('--batch_size', type=int, default=16, help='input batch size') |
|
|
22 |
|
|
|
23 |
# for setting inputs |
|
|
24 |
self.parser.add_argument('--random_crop', type=int, default=1, |
|
|
25 |
help='using random crop to process input image when ' |
|
|
26 |
'the required size is smaller than the given size') |
|
|
27 |
self.parser.add_argument('--random_mask', type=int, default=1) |
|
|
28 |
self.parser.add_argument('--mask_type', type=str, default='rect') |
|
|
29 |
self.parser.add_argument('--pretrain_network', type=int, default=0) |
|
|
30 |
self.parser.add_argument('--lambda_adv', type=float, default=1e-3) |
|
|
31 |
self.parser.add_argument('--lambda_rec', type=float, default=1.4) |
|
|
32 |
self.parser.add_argument('--lambda_ae', type=float, default=1.2) |
|
|
33 |
self.parser.add_argument('--lambda_mrf', type=float, default=0.05) |
|
|
34 |
self.parser.add_argument('--lambda_gp', type=float, default=10) |
|
|
35 |
self.parser.add_argument('--random_seed', type=bool, default=False) |
|
|
36 |
self.parser.add_argument('--padding', type=str, default='SAME') |
|
|
37 |
self.parser.add_argument('--D_max_iters', type=int, default=5) |
|
|
38 |
self.parser.add_argument('--lr', type=float, default=1e-5, help='learning rate for training') |
|
|
39 |
|
|
|
40 |
self.parser.add_argument('--train_spe', type=int, default=1000) |
|
|
41 |
self.parser.add_argument('--epochs', type=int, default=40) |
|
|
42 |
self.parser.add_argument('--viz_steps', type=int, default=5) |
|
|
43 |
self.parser.add_argument('--spectral_norm', type=int, default=1) |
|
|
44 |
|
|
|
45 |
self.parser.add_argument('--img_shapes', type=str, default='256,256,3', |
|
|
46 |
help='given shape parameters: h,w,c or h,w') |
|
|
47 |
self.parser.add_argument('--mask_shapes', type=str, default='128,128', |
|
|
48 |
help='given mask parameters: h,w') |
|
|
49 |
self.parser.add_argument('--max_delta_shapes', type=str, default='32,32') |
|
|
50 |
self.parser.add_argument('--margins', type=str, default='0,0') |
|
|
51 |
|
|
|
52 |
|
|
|
53 |
# for generator |
|
|
54 |
self.parser.add_argument('--g_cnum', type=int, default=32, |
|
|
55 |
help='# of generator filters in first conv layer') |
|
|
56 |
self.parser.add_argument('--d_cnum', type=int, default=64, |
|
|
57 |
help='# of discriminator filters in first conv layer') |
|
|
58 |
|
|
|
59 |
# for id-mrf computation |
|
|
60 |
self.parser.add_argument('--vgg19_path', type=str, default='vgg19_weights/imagenet-vgg-verydeep-19.mat') |
|
|
61 |
# for instance-wise features |
|
|
62 |
self.initialized = True |
|
|
63 |
|
|
|
64 |
def parse(self): |
|
|
65 |
if not self.initialized: |
|
|
66 |
self.initialize() |
|
|
67 |
self.opt = self.parser.parse_args() |
|
|
68 |
|
|
|
69 |
self.opt.dataset_path = self.opt.data_file |
|
|
70 |
|
|
|
71 |
str_ids = self.opt.gpu_ids.split(',') |
|
|
72 |
self.opt.gpu_ids = [] |
|
|
73 |
for str_id in str_ids: |
|
|
74 |
id = int(str_id) |
|
|
75 |
if id >= 0: |
|
|
76 |
self.opt.gpu_ids.append(str(id)) |
|
|
77 |
|
|
|
78 |
assert self.opt.random_crop in [0, 1] |
|
|
79 |
self.opt.random_crop = True if self.opt.random_crop == 1 else False |
|
|
80 |
|
|
|
81 |
assert self.opt.random_mask in [0, 1] |
|
|
82 |
self.opt.random_mask = True if self.opt.random_mask == 1 else False |
|
|
83 |
|
|
|
84 |
assert self.opt.pretrain_network in [0, 1] |
|
|
85 |
self.opt.pretrain_network = True if self.opt.pretrain_network == 1 else False |
|
|
86 |
|
|
|
87 |
assert self.opt.spectral_norm in [0, 1] |
|
|
88 |
self.opt.spectral_norm = True if self.opt.spectral_norm == 1 else False |
|
|
89 |
|
|
|
90 |
assert self.opt.padding in ['SAME', 'MIRROR'] |
|
|
91 |
|
|
|
92 |
assert self.opt.mask_type in ['rect', 'stroke'] |
|
|
93 |
|
|
|
94 |
str_img_shapes = self.opt.img_shapes.split(',') |
|
|
95 |
self.opt.img_shapes = [int(x) for x in str_img_shapes] |
|
|
96 |
|
|
|
97 |
str_mask_shapes = self.opt.mask_shapes.split(',') |
|
|
98 |
self.opt.mask_shapes = [int(x) for x in str_mask_shapes] |
|
|
99 |
|
|
|
100 |
str_max_delta_shapes = self.opt.max_delta_shapes.split(',') |
|
|
101 |
self.opt.max_delta_shapes = [int(x) for x in str_max_delta_shapes] |
|
|
102 |
|
|
|
103 |
str_margins = self.opt.margins.split(',') |
|
|
104 |
self.opt.margins = [int(x) for x in str_margins] |
|
|
105 |
|
|
|
106 |
# model name and date |
|
|
107 |
self.opt.date_str = time.strftime('%Y%m%d-%H%M%S') |
|
|
108 |
self.opt.model_name = 'GMCNN' |
|
|
109 |
self.opt.model_folder = self.opt.date_str + '_' + self.opt.model_name |
|
|
110 |
self.opt.model_folder += '_' + self.opt.dataset |
|
|
111 |
self.opt.model_folder += '_b' + str(self.opt.batch_size) |
|
|
112 |
self.opt.model_folder += '_s' + str(self.opt.img_shapes[0]) + 'x' + str(self.opt.img_shapes[1]) |
|
|
113 |
self.opt.model_folder += '_gc' + str(self.opt.g_cnum) |
|
|
114 |
self.opt.model_folder += '_dc' + str(self.opt.d_cnum) |
|
|
115 |
|
|
|
116 |
self.opt.model_folder += '_randmask-' + self.opt.mask_type if self.opt.random_mask else '' |
|
|
117 |
self.opt.model_folder += '_pretrain' if self.opt.pretrain_network else '' |
|
|
118 |
|
|
|
119 |
if os.path.isdir(self.opt.checkpoint_dir) is False: |
|
|
120 |
os.mkdir(self.opt.checkpoint_dir) |
|
|
121 |
|
|
|
122 |
self.opt.model_folder = os.path.join(self.opt.checkpoint_dir, self.opt.model_folder) |
|
|
123 |
if os.path.isdir(self.opt.model_folder) is False: |
|
|
124 |
os.mkdir(self.opt.model_folder) |
|
|
125 |
|
|
|
126 |
# set gpu ids |
|
|
127 |
if len(self.opt.gpu_ids) > 0: |
|
|
128 |
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(self.opt.gpu_ids) |
|
|
129 |
|
|
|
130 |
args = vars(self.opt) |
|
|
131 |
|
|
|
132 |
print('------------ Options -------------') |
|
|
133 |
for k, v in sorted(args.items()): |
|
|
134 |
print('%s: %s' % (str(k), str(v))) |
|
|
135 |
print('-------------- End ----------------') |
|
|
136 |
|
|
|
137 |
return self.opt |