|
a |
|
b/inpainting/model/loss.py |
|
|
1 |
import torch |
|
|
2 |
import torch.nn as nn |
|
|
3 |
import torch.autograd as autograd |
|
|
4 |
import torch.nn.functional as F |
|
|
5 |
from model.layer import VGG19FeatLayer |
|
|
6 |
from functools import reduce |
|
|
7 |
|
|
|
8 |
class WGANLoss(nn.Module): |
|
|
9 |
def __init__(self): |
|
|
10 |
super(WGANLoss, self).__init__() |
|
|
11 |
|
|
|
12 |
def __call__(self, input, target): |
|
|
13 |
d_loss = (input - target).mean() |
|
|
14 |
g_loss = -input.mean() |
|
|
15 |
return {'g_loss': g_loss, 'd_loss': d_loss} |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
def gradient_penalty(xin, yout, mask=None): |
|
|
19 |
gradients = autograd.grad(yout, xin, create_graph=True, |
|
|
20 |
grad_outputs=torch.ones(yout.size()).cuda(), retain_graph=True, only_inputs=True)[0] |
|
|
21 |
if mask is not None: |
|
|
22 |
gradients = gradients * mask |
|
|
23 |
gradients = gradients.view(gradients.size(0), -1) |
|
|
24 |
gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean() |
|
|
25 |
return gp |
|
|
26 |
|
|
|
27 |
|
|
|
28 |
def random_interpolate(gt, pred): |
|
|
29 |
batch_size = gt.size(0) |
|
|
30 |
alpha = torch.rand(batch_size, 1, 1, 1).cuda() |
|
|
31 |
# alpha = alpha.expand(gt.size()).cuda() |
|
|
32 |
interpolated = gt * alpha + pred * (1 - alpha) |
|
|
33 |
return interpolated |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
class IDMRFLoss(nn.Module): |
|
|
37 |
def __init__(self, featlayer=VGG19FeatLayer): |
|
|
38 |
super(IDMRFLoss, self).__init__() |
|
|
39 |
self.featlayer = featlayer() |
|
|
40 |
self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0} |
|
|
41 |
self.feat_content_layers = {'relu4_2': 1.0} |
|
|
42 |
self.bias = 1.0 |
|
|
43 |
self.nn_stretch_sigma = 0.5 |
|
|
44 |
self.lambda_style = 1.0 |
|
|
45 |
self.lambda_content = 1.0 |
|
|
46 |
|
|
|
47 |
def sum_normalize(self, featmaps): |
|
|
48 |
reduce_sum = torch.sum(featmaps, dim=1, keepdim=True) |
|
|
49 |
return featmaps / reduce_sum |
|
|
50 |
|
|
|
51 |
def patch_extraction(self, featmaps): |
|
|
52 |
patch_size = 1 |
|
|
53 |
patch_stride = 1 |
|
|
54 |
patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(3, patch_size, patch_stride) |
|
|
55 |
self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5) |
|
|
56 |
dims = self.patches_OIHW.size() |
|
|
57 |
self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5]) |
|
|
58 |
return self.patches_OIHW |
|
|
59 |
|
|
|
60 |
def compute_relative_distances(self, cdist): |
|
|
61 |
epsilon = 1e-5 |
|
|
62 |
div = torch.min(cdist, dim=1, keepdim=True)[0] |
|
|
63 |
relative_dist = cdist / (div + epsilon) |
|
|
64 |
return relative_dist |
|
|
65 |
|
|
|
66 |
def exp_norm_relative_dist(self, relative_dist): |
|
|
67 |
scaled_dist = relative_dist |
|
|
68 |
dist_before_norm = torch.exp((self.bias - scaled_dist)/self.nn_stretch_sigma) |
|
|
69 |
self.cs_NCHW = self.sum_normalize(dist_before_norm) |
|
|
70 |
return self.cs_NCHW |
|
|
71 |
|
|
|
72 |
def mrf_loss(self, gen, tar): |
|
|
73 |
meanT = torch.mean(tar, 1, keepdim=True) |
|
|
74 |
gen_feats, tar_feats = gen - meanT, tar - meanT |
|
|
75 |
|
|
|
76 |
gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True) |
|
|
77 |
tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True) |
|
|
78 |
|
|
|
79 |
gen_normalized = gen_feats / gen_feats_norm |
|
|
80 |
tar_normalized = tar_feats / tar_feats_norm |
|
|
81 |
|
|
|
82 |
cosine_dist_l = [] |
|
|
83 |
BatchSize = tar.size(0) |
|
|
84 |
|
|
|
85 |
for i in range(BatchSize): |
|
|
86 |
tar_feat_i = tar_normalized[i:i+1, :, :, :] |
|
|
87 |
gen_feat_i = gen_normalized[i:i+1, :, :, :] |
|
|
88 |
patches_OIHW = self.patch_extraction(tar_feat_i) |
|
|
89 |
|
|
|
90 |
cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW) |
|
|
91 |
cosine_dist_l.append(cosine_dist_i) |
|
|
92 |
cosine_dist = torch.cat(cosine_dist_l, dim=0) |
|
|
93 |
cosine_dist_zero_2_one = - (cosine_dist - 1) / 2 |
|
|
94 |
relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one) |
|
|
95 |
rela_dist = self.exp_norm_relative_dist(relative_dist) |
|
|
96 |
dims_div_mrf = rela_dist.size() |
|
|
97 |
k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0] |
|
|
98 |
div_mrf = torch.mean(k_max_nc, dim=1) |
|
|
99 |
div_mrf_sum = -torch.log(div_mrf) |
|
|
100 |
div_mrf_sum = torch.sum(div_mrf_sum) |
|
|
101 |
return div_mrf_sum |
|
|
102 |
|
|
|
103 |
def forward(self, gen, tar): |
|
|
104 |
gen_vgg_feats = self.featlayer(gen) |
|
|
105 |
tar_vgg_feats = self.featlayer(tar) |
|
|
106 |
|
|
|
107 |
style_loss_list = [self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers] |
|
|
108 |
self.style_loss = reduce(lambda x, y: x+y, style_loss_list) * self.lambda_style |
|
|
109 |
|
|
|
110 |
content_loss_list = [self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers] |
|
|
111 |
self.content_loss = reduce(lambda x, y: x+y, content_loss_list) * self.lambda_content |
|
|
112 |
|
|
|
113 |
return self.style_loss + self.content_loss |
|
|
114 |
|
|
|
115 |
|
|
|
116 |
class StyleLoss(nn.Module): |
|
|
117 |
def __init__(self, featlayer=VGG19FeatLayer, style_layers=None): |
|
|
118 |
super(StyleLoss, self).__init__() |
|
|
119 |
self.featlayer = featlayer() |
|
|
120 |
if style_layers is not None: |
|
|
121 |
self.feat_style_layers = style_layers |
|
|
122 |
else: |
|
|
123 |
self.feat_style_layers = {'relu2_2': 1.0, 'relu3_2': 1.0, 'relu4_2': 1.0} |
|
|
124 |
|
|
|
125 |
def gram_matrix(self, x): |
|
|
126 |
b, c, h, w = x.size() |
|
|
127 |
feats = x.view(b * c, h * w) |
|
|
128 |
g = torch.mm(feats, feats.t()) |
|
|
129 |
return g.div(b * c * h * w) |
|
|
130 |
|
|
|
131 |
def _l1loss(self, gen, tar): |
|
|
132 |
return torch.abs(gen-tar).mean() |
|
|
133 |
|
|
|
134 |
def forward(self, gen, tar): |
|
|
135 |
gen_vgg_feats = self.featlayer(gen) |
|
|
136 |
tar_vgg_feats = self.featlayer(tar) |
|
|
137 |
style_loss_list = [self.feat_style_layers[layer] * self._l1loss(self.gram_matrix(gen_vgg_feats[layer]), self.gram_matrix(tar_vgg_feats[layer])) for |
|
|
138 |
layer in self.feat_style_layers] |
|
|
139 |
style_loss = reduce(lambda x, y: x + y, style_loss_list) |
|
|
140 |
return style_loss |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
class ContentLoss(nn.Module): |
|
|
144 |
def __init__(self, featlayer=VGG19FeatLayer, content_layers=None): |
|
|
145 |
super(ContentLoss, self).__init__() |
|
|
146 |
self.featlayer = featlayer() |
|
|
147 |
if content_layers is not None: |
|
|
148 |
self.feat_content_layers = content_layers |
|
|
149 |
else: |
|
|
150 |
self.feat_content_layers = {'relu4_2': 1.0} |
|
|
151 |
|
|
|
152 |
def _l1loss(self, gen, tar): |
|
|
153 |
return torch.abs(gen-tar).mean() |
|
|
154 |
|
|
|
155 |
def forward(self, gen, tar): |
|
|
156 |
gen_vgg_feats = self.featlayer(gen) |
|
|
157 |
tar_vgg_feats = self.featlayer(tar) |
|
|
158 |
content_loss_list = [self.feat_content_layers[layer] * self._l1loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for |
|
|
159 |
layer in self.feat_content_layers] |
|
|
160 |
content_loss = reduce(lambda x, y: x + y, content_loss_list) |
|
|
161 |
return content_loss |
|
|
162 |
|
|
|
163 |
|
|
|
164 |
class TVLoss(nn.Module): |
|
|
165 |
def __init__(self): |
|
|
166 |
super(TVLoss, self).__init__() |
|
|
167 |
|
|
|
168 |
def forward(self, x): |
|
|
169 |
h_x, w_x = x.size()[2:] |
|
|
170 |
h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :h_x-1, :]) |
|
|
171 |
w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :w_x-1]) |
|
|
172 |
loss = torch.sum(h_tv) + torch.sum(w_tv) |
|
|
173 |
return loss |