Diff of /inpainting/model/loss.py [000000] .. [92cc18]

Switch to unified view

a b/inpainting/model/loss.py
1
import torch
2
import torch.nn as nn
3
import torch.autograd as autograd
4
import torch.nn.functional as F
5
from model.layer import VGG19FeatLayer
6
from functools import reduce
7
8
class WGANLoss(nn.Module):
9
    def __init__(self):
10
        super(WGANLoss, self).__init__()
11
12
    def __call__(self, input, target):
13
        d_loss = (input - target).mean()
14
        g_loss = -input.mean()
15
        return {'g_loss': g_loss, 'd_loss': d_loss}
16
17
18
def gradient_penalty(xin, yout, mask=None):
19
    gradients = autograd.grad(yout, xin, create_graph=True,
20
                              grad_outputs=torch.ones(yout.size()).cuda(), retain_graph=True, only_inputs=True)[0]
21
    if mask is not None:
22
        gradients = gradients * mask
23
    gradients = gradients.view(gradients.size(0), -1)
24
    gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
25
    return gp
26
27
28
def random_interpolate(gt, pred):
29
    batch_size = gt.size(0)
30
    alpha = torch.rand(batch_size, 1, 1, 1).cuda()
31
    # alpha = alpha.expand(gt.size()).cuda()
32
    interpolated = gt * alpha + pred * (1 - alpha)
33
    return interpolated
34
35
36
class IDMRFLoss(nn.Module):
37
    def __init__(self, featlayer=VGG19FeatLayer):
38
        super(IDMRFLoss, self).__init__()
39
        self.featlayer = featlayer()
40
        self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
41
        self.feat_content_layers = {'relu4_2': 1.0}
42
        self.bias = 1.0
43
        self.nn_stretch_sigma = 0.5
44
        self.lambda_style = 1.0
45
        self.lambda_content = 1.0
46
47
    def sum_normalize(self, featmaps):
48
        reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
49
        return featmaps / reduce_sum
50
51
    def patch_extraction(self, featmaps):
52
        patch_size = 1
53
        patch_stride = 1
54
        patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(3, patch_size, patch_stride)
55
        self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
56
        dims = self.patches_OIHW.size()
57
        self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
58
        return self.patches_OIHW
59
60
    def compute_relative_distances(self, cdist):
61
        epsilon = 1e-5
62
        div = torch.min(cdist, dim=1, keepdim=True)[0]
63
        relative_dist = cdist / (div + epsilon)
64
        return relative_dist
65
66
    def exp_norm_relative_dist(self, relative_dist):
67
        scaled_dist = relative_dist
68
        dist_before_norm = torch.exp((self.bias - scaled_dist)/self.nn_stretch_sigma)
69
        self.cs_NCHW = self.sum_normalize(dist_before_norm)
70
        return self.cs_NCHW
71
72
    def mrf_loss(self, gen, tar):
73
        meanT = torch.mean(tar, 1, keepdim=True)
74
        gen_feats, tar_feats = gen - meanT, tar - meanT
75
76
        gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
77
        tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)
78
79
        gen_normalized = gen_feats / gen_feats_norm
80
        tar_normalized = tar_feats / tar_feats_norm
81
82
        cosine_dist_l = []
83
        BatchSize = tar.size(0)
84
85
        for i in range(BatchSize):
86
            tar_feat_i = tar_normalized[i:i+1, :, :, :]
87
            gen_feat_i = gen_normalized[i:i+1, :, :, :]
88
            patches_OIHW = self.patch_extraction(tar_feat_i)
89
90
            cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
91
            cosine_dist_l.append(cosine_dist_i)
92
        cosine_dist = torch.cat(cosine_dist_l, dim=0)
93
        cosine_dist_zero_2_one = - (cosine_dist - 1) / 2
94
        relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
95
        rela_dist = self.exp_norm_relative_dist(relative_dist)
96
        dims_div_mrf = rela_dist.size()
97
        k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
98
        div_mrf = torch.mean(k_max_nc, dim=1)
99
        div_mrf_sum = -torch.log(div_mrf)
100
        div_mrf_sum = torch.sum(div_mrf_sum)
101
        return div_mrf_sum
102
103
    def forward(self, gen, tar):
104
        gen_vgg_feats = self.featlayer(gen)
105
        tar_vgg_feats = self.featlayer(tar)
106
107
        style_loss_list = [self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers]
108
        self.style_loss = reduce(lambda x, y: x+y, style_loss_list) * self.lambda_style
109
110
        content_loss_list = [self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers]
111
        self.content_loss = reduce(lambda x, y: x+y, content_loss_list) * self.lambda_content
112
113
        return self.style_loss + self.content_loss
114
115
116
class StyleLoss(nn.Module):
117
    def __init__(self, featlayer=VGG19FeatLayer, style_layers=None):
118
        super(StyleLoss, self).__init__()
119
        self.featlayer = featlayer()
120
        if style_layers is not None:
121
            self.feat_style_layers = style_layers
122
        else:
123
            self.feat_style_layers = {'relu2_2': 1.0, 'relu3_2': 1.0, 'relu4_2': 1.0}
124
125
    def gram_matrix(self, x):
126
        b, c, h, w = x.size()
127
        feats = x.view(b * c, h * w)
128
        g = torch.mm(feats, feats.t())
129
        return g.div(b * c * h * w)
130
131
    def _l1loss(self, gen, tar):
132
        return torch.abs(gen-tar).mean()
133
134
    def forward(self, gen, tar):
135
        gen_vgg_feats = self.featlayer(gen)
136
        tar_vgg_feats = self.featlayer(tar)
137
        style_loss_list = [self.feat_style_layers[layer] * self._l1loss(self.gram_matrix(gen_vgg_feats[layer]), self.gram_matrix(tar_vgg_feats[layer])) for
138
                           layer in self.feat_style_layers]
139
        style_loss = reduce(lambda x, y: x + y, style_loss_list)
140
        return style_loss
141
142
143
class ContentLoss(nn.Module):
144
    def __init__(self, featlayer=VGG19FeatLayer, content_layers=None):
145
        super(ContentLoss, self).__init__()
146
        self.featlayer = featlayer()
147
        if content_layers is not None:
148
            self.feat_content_layers = content_layers
149
        else:
150
            self.feat_content_layers = {'relu4_2': 1.0}
151
152
    def _l1loss(self, gen, tar):
153
        return torch.abs(gen-tar).mean()
154
155
    def forward(self, gen, tar):
156
        gen_vgg_feats = self.featlayer(gen)
157
        tar_vgg_feats = self.featlayer(tar)
158
        content_loss_list = [self.feat_content_layers[layer] * self._l1loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for
159
                             layer in self.feat_content_layers]
160
        content_loss = reduce(lambda x, y: x + y, content_loss_list)
161
        return content_loss
162
163
164
class TVLoss(nn.Module):
165
    def __init__(self):
166
        super(TVLoss, self).__init__()
167
168
    def forward(self, x):
169
        h_x, w_x = x.size()[2:]
170
        h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :h_x-1, :])
171
        w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :w_x-1])
172
        loss = torch.sum(h_tv) + torch.sum(w_tv)
173
        return loss