Diff of /inpainting/model/loss.py [000000] .. [92cc18]

Switch to side-by-side view

--- a
+++ b/inpainting/model/loss.py
@@ -0,0 +1,173 @@
+import torch
+import torch.nn as nn
+import torch.autograd as autograd
+import torch.nn.functional as F
+from model.layer import VGG19FeatLayer
+from functools import reduce
+
+class WGANLoss(nn.Module):
+    def __init__(self):
+        super(WGANLoss, self).__init__()
+
+    def __call__(self, input, target):
+        d_loss = (input - target).mean()
+        g_loss = -input.mean()
+        return {'g_loss': g_loss, 'd_loss': d_loss}
+
+
+def gradient_penalty(xin, yout, mask=None):
+    gradients = autograd.grad(yout, xin, create_graph=True,
+                              grad_outputs=torch.ones(yout.size()).cuda(), retain_graph=True, only_inputs=True)[0]
+    if mask is not None:
+        gradients = gradients * mask
+    gradients = gradients.view(gradients.size(0), -1)
+    gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
+    return gp
+
+
+def random_interpolate(gt, pred):
+    batch_size = gt.size(0)
+    alpha = torch.rand(batch_size, 1, 1, 1).cuda()
+    # alpha = alpha.expand(gt.size()).cuda()
+    interpolated = gt * alpha + pred * (1 - alpha)
+    return interpolated
+
+
+class IDMRFLoss(nn.Module):
+    def __init__(self, featlayer=VGG19FeatLayer):
+        super(IDMRFLoss, self).__init__()
+        self.featlayer = featlayer()
+        self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
+        self.feat_content_layers = {'relu4_2': 1.0}
+        self.bias = 1.0
+        self.nn_stretch_sigma = 0.5
+        self.lambda_style = 1.0
+        self.lambda_content = 1.0
+
+    def sum_normalize(self, featmaps):
+        reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
+        return featmaps / reduce_sum
+
+    def patch_extraction(self, featmaps):
+        patch_size = 1
+        patch_stride = 1
+        patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(3, patch_size, patch_stride)
+        self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
+        dims = self.patches_OIHW.size()
+        self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
+        return self.patches_OIHW
+
+    def compute_relative_distances(self, cdist):
+        epsilon = 1e-5
+        div = torch.min(cdist, dim=1, keepdim=True)[0]
+        relative_dist = cdist / (div + epsilon)
+        return relative_dist
+
+    def exp_norm_relative_dist(self, relative_dist):
+        scaled_dist = relative_dist
+        dist_before_norm = torch.exp((self.bias - scaled_dist)/self.nn_stretch_sigma)
+        self.cs_NCHW = self.sum_normalize(dist_before_norm)
+        return self.cs_NCHW
+
+    def mrf_loss(self, gen, tar):
+        meanT = torch.mean(tar, 1, keepdim=True)
+        gen_feats, tar_feats = gen - meanT, tar - meanT
+
+        gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
+        tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)
+
+        gen_normalized = gen_feats / gen_feats_norm
+        tar_normalized = tar_feats / tar_feats_norm
+
+        cosine_dist_l = []
+        BatchSize = tar.size(0)
+
+        for i in range(BatchSize):
+            tar_feat_i = tar_normalized[i:i+1, :, :, :]
+            gen_feat_i = gen_normalized[i:i+1, :, :, :]
+            patches_OIHW = self.patch_extraction(tar_feat_i)
+
+            cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
+            cosine_dist_l.append(cosine_dist_i)
+        cosine_dist = torch.cat(cosine_dist_l, dim=0)
+        cosine_dist_zero_2_one = - (cosine_dist - 1) / 2
+        relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
+        rela_dist = self.exp_norm_relative_dist(relative_dist)
+        dims_div_mrf = rela_dist.size()
+        k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
+        div_mrf = torch.mean(k_max_nc, dim=1)
+        div_mrf_sum = -torch.log(div_mrf)
+        div_mrf_sum = torch.sum(div_mrf_sum)
+        return div_mrf_sum
+
+    def forward(self, gen, tar):
+        gen_vgg_feats = self.featlayer(gen)
+        tar_vgg_feats = self.featlayer(tar)
+
+        style_loss_list = [self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers]
+        self.style_loss = reduce(lambda x, y: x+y, style_loss_list) * self.lambda_style
+
+        content_loss_list = [self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers]
+        self.content_loss = reduce(lambda x, y: x+y, content_loss_list) * self.lambda_content
+
+        return self.style_loss + self.content_loss
+
+
+class StyleLoss(nn.Module):
+    def __init__(self, featlayer=VGG19FeatLayer, style_layers=None):
+        super(StyleLoss, self).__init__()
+        self.featlayer = featlayer()
+        if style_layers is not None:
+            self.feat_style_layers = style_layers
+        else:
+            self.feat_style_layers = {'relu2_2': 1.0, 'relu3_2': 1.0, 'relu4_2': 1.0}
+
+    def gram_matrix(self, x):
+        b, c, h, w = x.size()
+        feats = x.view(b * c, h * w)
+        g = torch.mm(feats, feats.t())
+        return g.div(b * c * h * w)
+
+    def _l1loss(self, gen, tar):
+        return torch.abs(gen-tar).mean()
+
+    def forward(self, gen, tar):
+        gen_vgg_feats = self.featlayer(gen)
+        tar_vgg_feats = self.featlayer(tar)
+        style_loss_list = [self.feat_style_layers[layer] * self._l1loss(self.gram_matrix(gen_vgg_feats[layer]), self.gram_matrix(tar_vgg_feats[layer])) for
+                           layer in self.feat_style_layers]
+        style_loss = reduce(lambda x, y: x + y, style_loss_list)
+        return style_loss
+
+
+class ContentLoss(nn.Module):
+    def __init__(self, featlayer=VGG19FeatLayer, content_layers=None):
+        super(ContentLoss, self).__init__()
+        self.featlayer = featlayer()
+        if content_layers is not None:
+            self.feat_content_layers = content_layers
+        else:
+            self.feat_content_layers = {'relu4_2': 1.0}
+
+    def _l1loss(self, gen, tar):
+        return torch.abs(gen-tar).mean()
+
+    def forward(self, gen, tar):
+        gen_vgg_feats = self.featlayer(gen)
+        tar_vgg_feats = self.featlayer(tar)
+        content_loss_list = [self.feat_content_layers[layer] * self._l1loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for
+                             layer in self.feat_content_layers]
+        content_loss = reduce(lambda x, y: x + y, content_loss_list)
+        return content_loss
+
+
+class TVLoss(nn.Module):
+    def __init__(self):
+        super(TVLoss, self).__init__()
+
+    def forward(self, x):
+        h_x, w_x = x.size()[2:]
+        h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :h_x-1, :])
+        w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :w_x-1])
+        loss = torch.sum(h_tv) + torch.sum(w_tv)
+        return loss