--- a +++ b/inpainting/model/loss.py @@ -0,0 +1,173 @@ +import torch +import torch.nn as nn +import torch.autograd as autograd +import torch.nn.functional as F +from model.layer import VGG19FeatLayer +from functools import reduce + +class WGANLoss(nn.Module): + def __init__(self): + super(WGANLoss, self).__init__() + + def __call__(self, input, target): + d_loss = (input - target).mean() + g_loss = -input.mean() + return {'g_loss': g_loss, 'd_loss': d_loss} + + +def gradient_penalty(xin, yout, mask=None): + gradients = autograd.grad(yout, xin, create_graph=True, + grad_outputs=torch.ones(yout.size()).cuda(), retain_graph=True, only_inputs=True)[0] + if mask is not None: + gradients = gradients * mask + gradients = gradients.view(gradients.size(0), -1) + gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean() + return gp + + +def random_interpolate(gt, pred): + batch_size = gt.size(0) + alpha = torch.rand(batch_size, 1, 1, 1).cuda() + # alpha = alpha.expand(gt.size()).cuda() + interpolated = gt * alpha + pred * (1 - alpha) + return interpolated + + +class IDMRFLoss(nn.Module): + def __init__(self, featlayer=VGG19FeatLayer): + super(IDMRFLoss, self).__init__() + self.featlayer = featlayer() + self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0} + self.feat_content_layers = {'relu4_2': 1.0} + self.bias = 1.0 + self.nn_stretch_sigma = 0.5 + self.lambda_style = 1.0 + self.lambda_content = 1.0 + + def sum_normalize(self, featmaps): + reduce_sum = torch.sum(featmaps, dim=1, keepdim=True) + return featmaps / reduce_sum + + def patch_extraction(self, featmaps): + patch_size = 1 + patch_stride = 1 + patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(3, patch_size, patch_stride) + self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5) + dims = self.patches_OIHW.size() + self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5]) + return self.patches_OIHW + + def compute_relative_distances(self, cdist): + epsilon = 1e-5 + div = torch.min(cdist, dim=1, keepdim=True)[0] + relative_dist = cdist / (div + epsilon) + return relative_dist + + def exp_norm_relative_dist(self, relative_dist): + scaled_dist = relative_dist + dist_before_norm = torch.exp((self.bias - scaled_dist)/self.nn_stretch_sigma) + self.cs_NCHW = self.sum_normalize(dist_before_norm) + return self.cs_NCHW + + def mrf_loss(self, gen, tar): + meanT = torch.mean(tar, 1, keepdim=True) + gen_feats, tar_feats = gen - meanT, tar - meanT + + gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True) + tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True) + + gen_normalized = gen_feats / gen_feats_norm + tar_normalized = tar_feats / tar_feats_norm + + cosine_dist_l = [] + BatchSize = tar.size(0) + + for i in range(BatchSize): + tar_feat_i = tar_normalized[i:i+1, :, :, :] + gen_feat_i = gen_normalized[i:i+1, :, :, :] + patches_OIHW = self.patch_extraction(tar_feat_i) + + cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW) + cosine_dist_l.append(cosine_dist_i) + cosine_dist = torch.cat(cosine_dist_l, dim=0) + cosine_dist_zero_2_one = - (cosine_dist - 1) / 2 + relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one) + rela_dist = self.exp_norm_relative_dist(relative_dist) + dims_div_mrf = rela_dist.size() + k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0] + div_mrf = torch.mean(k_max_nc, dim=1) + div_mrf_sum = -torch.log(div_mrf) + div_mrf_sum = torch.sum(div_mrf_sum) + return div_mrf_sum + + def forward(self, gen, tar): + gen_vgg_feats = self.featlayer(gen) + tar_vgg_feats = self.featlayer(tar) + + style_loss_list = [self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers] + self.style_loss = reduce(lambda x, y: x+y, style_loss_list) * self.lambda_style + + content_loss_list = [self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers] + self.content_loss = reduce(lambda x, y: x+y, content_loss_list) * self.lambda_content + + return self.style_loss + self.content_loss + + +class StyleLoss(nn.Module): + def __init__(self, featlayer=VGG19FeatLayer, style_layers=None): + super(StyleLoss, self).__init__() + self.featlayer = featlayer() + if style_layers is not None: + self.feat_style_layers = style_layers + else: + self.feat_style_layers = {'relu2_2': 1.0, 'relu3_2': 1.0, 'relu4_2': 1.0} + + def gram_matrix(self, x): + b, c, h, w = x.size() + feats = x.view(b * c, h * w) + g = torch.mm(feats, feats.t()) + return g.div(b * c * h * w) + + def _l1loss(self, gen, tar): + return torch.abs(gen-tar).mean() + + def forward(self, gen, tar): + gen_vgg_feats = self.featlayer(gen) + tar_vgg_feats = self.featlayer(tar) + style_loss_list = [self.feat_style_layers[layer] * self._l1loss(self.gram_matrix(gen_vgg_feats[layer]), self.gram_matrix(tar_vgg_feats[layer])) for + layer in self.feat_style_layers] + style_loss = reduce(lambda x, y: x + y, style_loss_list) + return style_loss + + +class ContentLoss(nn.Module): + def __init__(self, featlayer=VGG19FeatLayer, content_layers=None): + super(ContentLoss, self).__init__() + self.featlayer = featlayer() + if content_layers is not None: + self.feat_content_layers = content_layers + else: + self.feat_content_layers = {'relu4_2': 1.0} + + def _l1loss(self, gen, tar): + return torch.abs(gen-tar).mean() + + def forward(self, gen, tar): + gen_vgg_feats = self.featlayer(gen) + tar_vgg_feats = self.featlayer(tar) + content_loss_list = [self.feat_content_layers[layer] * self._l1loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for + layer in self.feat_content_layers] + content_loss = reduce(lambda x, y: x + y, content_loss_list) + return content_loss + + +class TVLoss(nn.Module): + def __init__(self): + super(TVLoss, self).__init__() + + def forward(self, x): + h_x, w_x = x.size()[2:] + h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :h_x-1, :]) + w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :w_x-1]) + loss = torch.sum(h_tv) + torch.sum(w_tv) + return loss