--- a +++ b/experiments/train_augmented_pipeline.py @@ -0,0 +1,51 @@ +from training.consistency_trainers import * +from training.inductivenet_trainers import InductiveNetConsistencyTrainer, InductiveNetEnsembleTrainer +import sys + +if __name__ == '__main__': + id = sys.argv[1] + model = sys.argv[2] + config = {"model": model, + "device": "cuda", + "lr": 0.00001, + "batch_size": 8, + "epochs": 250, + "use_inpainter": False} + trainer = ConsistencyTrainer(id, config) + trainer.train() + + # config = {"model": "FPN", + # "device": "cuda", + # "lr": 0.00001, + # "batch_size": 8, + # "epochs": 250, + # "use_inpainter": False} + # trainer = ConsistencyTrainer(id=f"{sys.argv[1]}", config=config) + # trainer.train() + # config = {"model": "Unet", + # "device": "cuda", + # "lr": 0.00001, + # "batch_size": 8, + # "epochs": 250, + # "use_inpainter": False} + # trainer = StrictConsistencyTrainer(id=f"dual_jaccard-{sys.argv[1]}", config=config) + # trainer.train() + + # trainer = ConsistencyTrainerUsingAugmentation(id=f"augmentation-{sys.argv[1]}", config=config) + # trainer.train() + # config = {"model": "Unet", + # "device": "cuda", + # "lr": 0.00001, + # "batch_size": 8, + # "epochs": 250, + # "use_inpainter": False} + # trainer = ConsistencyTrainerUsingControlledAugmentation("aug_test", config) + # trainer.train() + # config = {"model": "Unet", + # "device": "cuda", + # "lr": 0.00001, + # "batch_size": 8, + # "epochs": 250, + # "use_inpainter": False} + # trainer = AdversarialConsistencyTrainer(id=f"adversarial-{sys.argv[1]}", config=config) + # trainer.train()