|
a |
|
b/experiments/train_augmented_pipeline.py |
|
|
1 |
from training.consistency_trainers import * |
|
|
2 |
from training.inductivenet_trainers import InductiveNetConsistencyTrainer, InductiveNetEnsembleTrainer |
|
|
3 |
import sys |
|
|
4 |
|
|
|
5 |
if __name__ == '__main__': |
|
|
6 |
id = sys.argv[1] |
|
|
7 |
model = sys.argv[2] |
|
|
8 |
config = {"model": model, |
|
|
9 |
"device": "cuda", |
|
|
10 |
"lr": 0.00001, |
|
|
11 |
"batch_size": 8, |
|
|
12 |
"epochs": 250, |
|
|
13 |
"use_inpainter": False} |
|
|
14 |
trainer = ConsistencyTrainer(id, config) |
|
|
15 |
trainer.train() |
|
|
16 |
|
|
|
17 |
# config = {"model": "FPN", |
|
|
18 |
# "device": "cuda", |
|
|
19 |
# "lr": 0.00001, |
|
|
20 |
# "batch_size": 8, |
|
|
21 |
# "epochs": 250, |
|
|
22 |
# "use_inpainter": False} |
|
|
23 |
# trainer = ConsistencyTrainer(id=f"{sys.argv[1]}", config=config) |
|
|
24 |
# trainer.train() |
|
|
25 |
# config = {"model": "Unet", |
|
|
26 |
# "device": "cuda", |
|
|
27 |
# "lr": 0.00001, |
|
|
28 |
# "batch_size": 8, |
|
|
29 |
# "epochs": 250, |
|
|
30 |
# "use_inpainter": False} |
|
|
31 |
# trainer = StrictConsistencyTrainer(id=f"dual_jaccard-{sys.argv[1]}", config=config) |
|
|
32 |
# trainer.train() |
|
|
33 |
|
|
|
34 |
# trainer = ConsistencyTrainerUsingAugmentation(id=f"augmentation-{sys.argv[1]}", config=config) |
|
|
35 |
# trainer.train() |
|
|
36 |
# config = {"model": "Unet", |
|
|
37 |
# "device": "cuda", |
|
|
38 |
# "lr": 0.00001, |
|
|
39 |
# "batch_size": 8, |
|
|
40 |
# "epochs": 250, |
|
|
41 |
# "use_inpainter": False} |
|
|
42 |
# trainer = ConsistencyTrainerUsingControlledAugmentation("aug_test", config) |
|
|
43 |
# trainer.train() |
|
|
44 |
# config = {"model": "Unet", |
|
|
45 |
# "device": "cuda", |
|
|
46 |
# "lr": 0.00001, |
|
|
47 |
# "batch_size": 8, |
|
|
48 |
# "epochs": 250, |
|
|
49 |
# "use_inpainter": False} |
|
|
50 |
# trainer = AdversarialConsistencyTrainer(id=f"adversarial-{sys.argv[1]}", config=config) |
|
|
51 |
# trainer.train() |