a b/experiments/train_augmented_pipeline.py
1
from training.consistency_trainers import *
2
from training.inductivenet_trainers import InductiveNetConsistencyTrainer, InductiveNetEnsembleTrainer
3
import sys
4
5
if __name__ == '__main__':
6
    id = sys.argv[1]
7
    model = sys.argv[2]
8
    config = {"model": model,
9
              "device": "cuda",
10
              "lr": 0.00001,
11
              "batch_size": 8,
12
              "epochs": 250,
13
              "use_inpainter": False}
14
    trainer = ConsistencyTrainer(id, config)
15
    trainer.train()
16
17
    # config = {"model": "FPN",
18
    #           "device": "cuda",
19
    #           "lr": 0.00001,
20
    #           "batch_size": 8,
21
    #           "epochs": 250,
22
    #           "use_inpainter": False}
23
    # trainer = ConsistencyTrainer(id=f"{sys.argv[1]}", config=config)
24
    # trainer.train()
25
    # config = {"model": "Unet",
26
    #           "device": "cuda",
27
    #           "lr": 0.00001,
28
    #           "batch_size": 8,
29
    #           "epochs": 250,
30
    #           "use_inpainter": False}
31
    # trainer = StrictConsistencyTrainer(id=f"dual_jaccard-{sys.argv[1]}", config=config)
32
    # trainer.train()
33
34
    # trainer = ConsistencyTrainerUsingAugmentation(id=f"augmentation-{sys.argv[1]}", config=config)
35
    # trainer.train()
36
    # config = {"model": "Unet",
37
    #           "device": "cuda",
38
    #           "lr": 0.00001,
39
    #           "batch_size": 8,
40
    #           "epochs": 250,
41
    #           "use_inpainter": False}
42
    # trainer = ConsistencyTrainerUsingControlledAugmentation("aug_test", config)
43
    # trainer.train()
44
    # config = {"model": "Unet",
45
    #           "device": "cuda",
46
    #           "lr": 0.00001,
47
    #           "batch_size": 8,
48
    #           "epochs": 250,
49
    #           "use_inpainter": False}
50
    # trainer = AdversarialConsistencyTrainer(id=f"adversarial-{sys.argv[1]}", config=config)
51
    # trainer.train()