|
a |
|
b/experiments/enqueue_vanilla.sbatch |
|
|
1 |
#!/bin/bash |
|
|
2 |
#SBATCH -p dgx2q # partition (queue) |
|
|
3 |
#SBATCH -N 1 # number of nodes |
|
|
4 |
#SBATCH -c 4 # number of cores |
|
|
5 |
#SBATCH -w g001 |
|
|
6 |
#SBATCH --gres=gpu:1 |
|
|
7 |
# #SBATCH --mem 128G # memory pool for all cores # Removed due to bug in Slurm 20.02.5 |
|
|
8 |
#SBATCH -t 4-0:00 # time (D-HH:MM) |
|
|
9 |
#SBATCH -o slurm.%N.%j.out # STDOUT |
|
|
10 |
#SBATCH -e slurm.%N.%j.err # STDERR |
|
|
11 |
|
|
|
12 |
ulimit -s 10240 |
|
|
13 |
|
|
|
14 |
module purge |
|
|
15 |
module load slurm/20.02.7 |
|
|
16 |
module load cuda11.0/blas/11.0.3 |
|
|
17 |
module load cuda11.0/fft/11.0.3 |
|
|
18 |
module load cuda11.0/nsight/11.0.3 |
|
|
19 |
module load cuda11.0/profiler/11.0.3 |
|
|
20 |
module load cuda11.0/toolkit/11.0.3 |
|
|
21 |
|
|
|
22 |
if [ -n "$SLURM_CPUS_PER_TASK" ]; then |
|
|
23 |
omp_threads=$SLURM_CPUS_PER_TASK |
|
|
24 |
else |
|
|
25 |
omp_threads=4 |
|
|
26 |
fi |
|
|
27 |
export OMP_NUM_THREADS=$omp_threads # OpenMP, Numpy |
|
|
28 |
export MKL_NUM_THREADS=$omp_threads # Intel MKL |
|
|
29 |
export NUMEXPR_NUM_THREADS=$omp_threads # Python3 Multiproc |
|
|
30 |
# export OPENBLAS_NUM_THREADS=2 # Using OpenBLAS? |
|
|
31 |
# export VECLIB_MAXIMUM_THREADS=2 # Accelware Vector Lib |
|
|
32 |
|
|
|
33 |
export PYTHONPATH=$PWD |
|
|
34 |
srun python experiments/train_normal_pipeline.py 1 |