Diff of /experiments/analysis.py [000000] .. [92cc18]

Switch to unified view

a b/experiments/analysis.py
1
from os import listdir
2
from os.path import join
3
4
import matplotlib.pyplot as plt
5
import numpy as np
6
import pandas as pd
7
8
9
def get_predictorwise_distribution(experiment_path):
10
    mean_ious = []
11
    for experiment in listdir(experiment_path):
12
        # mean_ious.append(np.load(join(experiment_path, experiment))) #cool
13
        mean_ious.append(np.mean(np.load(join(experiment_path, experiment))))
14
    plt.hist(mean_ious, bins=np.linspace(min(mean_ious), max(mean_ious), 25))
15
    plt.show()
16
17
18
def get_datawise_distribution(experiment_path):
19
    mean_ious = []
20
    for experiment in listdir(experiment_path):
21
        # mean_ious.append(np.load(join(experiment_path, experiment))) #cool
22
        mean_ious = np.concatenate((mean_ious, np.mean(np.load(join(experiment_path, experiment)))))
23
        plt.hist(mean_ious, bins=np.linspace(min(mean_ious), max(mean_ious), 25))
24
        plt.show()
25
26
27
def plot_training_progression(csv_name):
28
    df = pd.read_csv(csv_name)
29
    plt.plot(df["epoch"], df["iid_test_iou"], label="IID")
30
    plt.plot(df["epoch"], df["ood_iou"], label="OOD")
31
    plt.plot(df["epoch"], df["iid_test_iou"] - df["ood_iou"], label="Diff")
32
    plt.legend()
33
    plt.ylim((0, 1))
34
    plt.xlim((0, 250))
35
    plt.show()
36
37
38
if __name__ == '__main__':
39
    plot_training_progression("logs/consistency/DeepLab/0.csv")
40
    plot_training_progression("logs/consistency/DeepLab/1.csv")
41
    # df_iid = df["Augmented" not in df["name"]]
42
    # get_predictorwise_distribution("experiments/Data/Normal-Pipelines/DeepLab")