122 lines (121 with data), 3.2 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 1/1 [00:00<00:00, 14.85it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediting SIF Stability...\n",
"Prediting SGF Stability...\n",
"Predicted SIF/SGF stability saved to the original file: Sample_Sequence.csv\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Compound</th>\n",
" <th>SMILES</th>\n",
" <th>Stability_in_SIF</th>\n",
" <th>Stability_in_SGF</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Oxytocin</td>\n",
" <td>CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N...</td>\n",
" <td>Not Stable</td>\n",
" <td>Stable</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Compound SMILES \\\n",
"0 Oxytocin CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N... \n",
"\n",
" Stability_in_SIF Stability_in_SGF \n",
"0 Not Stable Stable "
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from lib.pred_util import model_predict, pep_feat, save_results\n",
"\n",
"#Define the path to the file that includes peptide sequence\n",
"Peptide_Path = 'Sample_Sequence.csv'\n",
"\n",
"#Featurising Peptides\n",
"peptide_features= pep_feat(Peptide_Path)\n",
"\n",
"#Make Predictions \n",
"SIF_Stability = model_predict(feat=peptide_features,Env='SIF')\n",
"SGF_Stability = model_predict(feat=peptide_features,Env='SGF')\n",
"\n",
"#Save Results\n",
"save_results(Peptide_Path,SIF_Stability,SGF_Stability)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.7.7 ('PolyML')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "69caf7ba448ccac8f685f0c0ceaf2c2f7e62cc7bd75b28eb68285a65e0406c4e"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}