|
a |
|
b/Prediction.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [ |
|
|
8 |
{ |
|
|
9 |
"name": "stderr", |
|
|
10 |
"output_type": "stream", |
|
|
11 |
"text": [ |
|
|
12 |
"100%|██████████| 1/1 [00:00<00:00, 14.85it/s]\n" |
|
|
13 |
] |
|
|
14 |
}, |
|
|
15 |
{ |
|
|
16 |
"name": "stdout", |
|
|
17 |
"output_type": "stream", |
|
|
18 |
"text": [ |
|
|
19 |
"Prediting SIF Stability...\n", |
|
|
20 |
"Prediting SGF Stability...\n", |
|
|
21 |
"Predicted SIF/SGF stability saved to the original file: Sample_Sequence.csv\n" |
|
|
22 |
] |
|
|
23 |
}, |
|
|
24 |
{ |
|
|
25 |
"data": { |
|
|
26 |
"text/html": [ |
|
|
27 |
"<div>\n", |
|
|
28 |
"<style scoped>\n", |
|
|
29 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
30 |
" vertical-align: middle;\n", |
|
|
31 |
" }\n", |
|
|
32 |
"\n", |
|
|
33 |
" .dataframe tbody tr th {\n", |
|
|
34 |
" vertical-align: top;\n", |
|
|
35 |
" }\n", |
|
|
36 |
"\n", |
|
|
37 |
" .dataframe thead th {\n", |
|
|
38 |
" text-align: right;\n", |
|
|
39 |
" }\n", |
|
|
40 |
"</style>\n", |
|
|
41 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
42 |
" <thead>\n", |
|
|
43 |
" <tr style=\"text-align: right;\">\n", |
|
|
44 |
" <th></th>\n", |
|
|
45 |
" <th>Compound</th>\n", |
|
|
46 |
" <th>SMILES</th>\n", |
|
|
47 |
" <th>Stability_in_SIF</th>\n", |
|
|
48 |
" <th>Stability_in_SGF</th>\n", |
|
|
49 |
" </tr>\n", |
|
|
50 |
" </thead>\n", |
|
|
51 |
" <tbody>\n", |
|
|
52 |
" <tr>\n", |
|
|
53 |
" <th>0</th>\n", |
|
|
54 |
" <td>Oxytocin</td>\n", |
|
|
55 |
" <td>CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N...</td>\n", |
|
|
56 |
" <td>Not Stable</td>\n", |
|
|
57 |
" <td>Stable</td>\n", |
|
|
58 |
" </tr>\n", |
|
|
59 |
" </tbody>\n", |
|
|
60 |
"</table>\n", |
|
|
61 |
"</div>" |
|
|
62 |
], |
|
|
63 |
"text/plain": [ |
|
|
64 |
" Compound SMILES \\\n", |
|
|
65 |
"0 Oxytocin CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N... \n", |
|
|
66 |
"\n", |
|
|
67 |
" Stability_in_SIF Stability_in_SGF \n", |
|
|
68 |
"0 Not Stable Stable " |
|
|
69 |
] |
|
|
70 |
}, |
|
|
71 |
"execution_count": 1, |
|
|
72 |
"metadata": {}, |
|
|
73 |
"output_type": "execute_result" |
|
|
74 |
} |
|
|
75 |
], |
|
|
76 |
"source": [ |
|
|
77 |
"from lib.pred_util import model_predict, pep_feat, save_results\n", |
|
|
78 |
"\n", |
|
|
79 |
"#Define the path to the file that includes peptide sequence\n", |
|
|
80 |
"Peptide_Path = 'Sample_Sequence.csv'\n", |
|
|
81 |
"\n", |
|
|
82 |
"#Featurising Peptides\n", |
|
|
83 |
"peptide_features= pep_feat(Peptide_Path)\n", |
|
|
84 |
"\n", |
|
|
85 |
"#Make Predictions \n", |
|
|
86 |
"SIF_Stability = model_predict(feat=peptide_features,Env='SIF')\n", |
|
|
87 |
"SGF_Stability = model_predict(feat=peptide_features,Env='SGF')\n", |
|
|
88 |
"\n", |
|
|
89 |
"#Save Results\n", |
|
|
90 |
"save_results(Peptide_Path,SIF_Stability,SGF_Stability)\n" |
|
|
91 |
] |
|
|
92 |
} |
|
|
93 |
], |
|
|
94 |
"metadata": { |
|
|
95 |
"kernelspec": { |
|
|
96 |
"display_name": "Python 3.7.7 ('PolyML')", |
|
|
97 |
"language": "python", |
|
|
98 |
"name": "python3" |
|
|
99 |
}, |
|
|
100 |
"language_info": { |
|
|
101 |
"codemirror_mode": { |
|
|
102 |
"name": "ipython", |
|
|
103 |
"version": 3 |
|
|
104 |
}, |
|
|
105 |
"file_extension": ".py", |
|
|
106 |
"mimetype": "text/x-python", |
|
|
107 |
"name": "python", |
|
|
108 |
"nbconvert_exporter": "python", |
|
|
109 |
"pygments_lexer": "ipython3", |
|
|
110 |
"version": "3.7.7" |
|
|
111 |
}, |
|
|
112 |
"orig_nbformat": 4, |
|
|
113 |
"vscode": { |
|
|
114 |
"interpreter": { |
|
|
115 |
"hash": "69caf7ba448ccac8f685f0c0ceaf2c2f7e62cc7bd75b28eb68285a65e0406c4e" |
|
|
116 |
} |
|
|
117 |
} |
|
|
118 |
}, |
|
|
119 |
"nbformat": 4, |
|
|
120 |
"nbformat_minor": 2 |
|
|
121 |
} |