Diff of /Prediction.ipynb [000000] .. [132747]

Switch to unified view

a b/Prediction.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [
8
    {
9
     "name": "stderr",
10
     "output_type": "stream",
11
     "text": [
12
      "100%|██████████| 1/1 [00:00<00:00, 14.85it/s]\n"
13
     ]
14
    },
15
    {
16
     "name": "stdout",
17
     "output_type": "stream",
18
     "text": [
19
      "Prediting SIF Stability...\n",
20
      "Prediting SGF Stability...\n",
21
      "Predicted SIF/SGF stability saved to the original file:  Sample_Sequence.csv\n"
22
     ]
23
    },
24
    {
25
     "data": {
26
      "text/html": [
27
       "<div>\n",
28
       "<style scoped>\n",
29
       "    .dataframe tbody tr th:only-of-type {\n",
30
       "        vertical-align: middle;\n",
31
       "    }\n",
32
       "\n",
33
       "    .dataframe tbody tr th {\n",
34
       "        vertical-align: top;\n",
35
       "    }\n",
36
       "\n",
37
       "    .dataframe thead th {\n",
38
       "        text-align: right;\n",
39
       "    }\n",
40
       "</style>\n",
41
       "<table border=\"1\" class=\"dataframe\">\n",
42
       "  <thead>\n",
43
       "    <tr style=\"text-align: right;\">\n",
44
       "      <th></th>\n",
45
       "      <th>Compound</th>\n",
46
       "      <th>SMILES</th>\n",
47
       "      <th>Stability_in_SIF</th>\n",
48
       "      <th>Stability_in_SGF</th>\n",
49
       "    </tr>\n",
50
       "  </thead>\n",
51
       "  <tbody>\n",
52
       "    <tr>\n",
53
       "      <th>0</th>\n",
54
       "      <td>Oxytocin</td>\n",
55
       "      <td>CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N...</td>\n",
56
       "      <td>Not Stable</td>\n",
57
       "      <td>Stable</td>\n",
58
       "    </tr>\n",
59
       "  </tbody>\n",
60
       "</table>\n",
61
       "</div>"
62
      ],
63
      "text/plain": [
64
       "   Compound                                             SMILES  \\\n",
65
       "0  Oxytocin  CC[C@H](C)[C@H]1C(=O)N[C@H](C(=O)N[C@H](C(=O)N...   \n",
66
       "\n",
67
       "  Stability_in_SIF Stability_in_SGF  \n",
68
       "0       Not Stable           Stable  "
69
      ]
70
     },
71
     "execution_count": 1,
72
     "metadata": {},
73
     "output_type": "execute_result"
74
    }
75
   ],
76
   "source": [
77
    "from lib.pred_util import model_predict, pep_feat, save_results\n",
78
    "\n",
79
    "#Define the path to the file that includes peptide sequence\n",
80
    "Peptide_Path = 'Sample_Sequence.csv'\n",
81
    "\n",
82
    "#Featurising Peptides\n",
83
    "peptide_features= pep_feat(Peptide_Path)\n",
84
    "\n",
85
    "#Make Predictions \n",
86
    "SIF_Stability = model_predict(feat=peptide_features,Env='SIF')\n",
87
    "SGF_Stability = model_predict(feat=peptide_features,Env='SGF')\n",
88
    "\n",
89
    "#Save Results\n",
90
    "save_results(Peptide_Path,SIF_Stability,SGF_Stability)\n"
91
   ]
92
  }
93
 ],
94
 "metadata": {
95
  "kernelspec": {
96
   "display_name": "Python 3.7.7 ('PolyML')",
97
   "language": "python",
98
   "name": "python3"
99
  },
100
  "language_info": {
101
   "codemirror_mode": {
102
    "name": "ipython",
103
    "version": 3
104
   },
105
   "file_extension": ".py",
106
   "mimetype": "text/x-python",
107
   "name": "python",
108
   "nbconvert_exporter": "python",
109
   "pygments_lexer": "ipython3",
110
   "version": "3.7.7"
111
  },
112
  "orig_nbformat": 4,
113
  "vscode": {
114
   "interpreter": {
115
    "hash": "69caf7ba448ccac8f685f0c0ceaf2c2f7e62cc7bd75b28eb68285a65e0406c4e"
116
   }
117
  }
118
 },
119
 "nbformat": 4,
120
 "nbformat_minor": 2
121
}