|
a |
|
b/classifier/getPrediction.py |
|
|
1 |
import pickle |
|
|
2 |
|
|
|
3 |
import cv2 |
|
|
4 |
import numpy as np |
|
|
5 |
import tensorflow as tf |
|
|
6 |
from tensorflow.keras.models import load_model |
|
|
7 |
# Process image and predict label |
|
|
8 |
from tensorflow.python.keras.preprocessing.image import img_to_array |
|
|
9 |
|
|
|
10 |
from class_names import prediction_classs |
|
|
11 |
|
|
|
12 |
IMG_SIZE = 256 |
|
|
13 |
LEARNING_RATE = 0.001 |
|
|
14 |
COLOUR_MAP = 3 |
|
|
15 |
classes = prediction_classs |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
# Evaluate the model |
|
|
19 |
def evaluate_image(model_path, class_path, valididation_path, image_size): |
|
|
20 |
# Load the model |
|
|
21 |
model = tf.keras.models.load_model(model_path) |
|
|
22 |
# Load classes |
|
|
23 |
with open(class_path, 'rb') as file: |
|
|
24 |
classes = pickle.load(file) |
|
|
25 |
# Get a list of categories |
|
|
26 |
|
|
|
27 |
image = cv2.imread(valididation_path) |
|
|
28 |
# Get input reshaped and rescaled |
|
|
29 |
image = cv2.resize(image, (image_size, image_size)) |
|
|
30 |
image_f = image.astype("float") / 255.0 |
|
|
31 |
image_a = img_to_array(image_f) |
|
|
32 |
image_p = np.expand_dims(image_a, axis=0) |
|
|
33 |
# Get predictions |
|
|
34 |
predictions = model.predict(image_p).ravel() |
|
|
35 |
# Print predictions |
|
|
36 |
print(predictions) |
|
|
37 |
# Get the class with the highest probability |
|
|
38 |
prediction = np.argmax(predictions) |
|
|
39 |
# Check if the prediction is correct |
|
|
40 |
return classes[prediction] |
|
|
41 |
|
|
|
42 |
|
|
|
43 |
def processImg(img_path): |
|
|
44 |
return evaluate_image(model_path=r'/Users/sikarwar07/PycharmProjects/MLPredictModelFlask/models' |
|
|
45 |
r'/NASNet_32B_331x331.h5', |
|
|
46 |
class_path=r'/Users/sikarwar07/PycharmProjects/MLPredictModelFlask/models' |
|
|
47 |
r'/NASNet_32B_331x331.pkl', |
|
|
48 |
valididation_path=img_path, |
|
|
49 |
image_size=331) |
|
|
50 |
|
|
|
51 |
# TODO Future implantation |
|
|
52 |
# Create image prediction in tabular format |
|
|
53 |
# # Read image |
|
|
54 |
# model = load_model("models/resnet152_class_23_epoch_50.h5") |
|
|
55 |
# loss = tf.keras.losses.CategoricalCrossentropy() |
|
|
56 |
# optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE) |
|
|
57 |
# model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) |
|
|
58 |
# image = cv2.imread(r"D:\test_data/" + category + '/' + name) |
|
|
59 |
# # Preprocess image |
|
|
60 |
# image = cv2.imread(IMG_PATH, 1) |
|
|
61 |
# image = cv2.resize(image, (IMG_SIZE, IMG_SIZE)) |
|
|
62 |
# image = image.astype("float") / 255.0 |
|
|
63 |
# image = img_to_array(image) |
|
|
64 |
# image = np.expand_dims(image, axis=0) |
|
|
65 |
# predictions = model.predict(image).ravel() |
|
|
66 |
# # Print predictions |
|
|
67 |
# print(predictions) |
|
|
68 |
# # Get the class with the highest probability |
|
|
69 |
# prediction = np.argmax(predictions) |
|
|
70 |
# # Check if the prediction is correct |
|
|
71 |
# correct = True if classes[prediction].lower() == category else False |
|
|
72 |
# # Draw the image and show the best prediction |
|
|
73 |
# image = cv2.resize(image, (256, 256)) |
|
|
74 |
# cv2.putText(image, '{0}: {1} %'.format(classes[prediction], str(round(predictions[prediction] * 100, 2))), |
|
|
75 |
# (12, 22), cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2) |
|
|
76 |
# cv2.putText(image, '{0}: {1} %'.format(classes[prediction], str(round(predictions[prediction] * 100, 2))), |
|
|
77 |
# (10, 20), cv2.FONT_HERSHEY_DUPLEX, 0.7, (65, 105, 225), 2) |
|
|
78 |
# cv2.putText(image, '{0}'.format('CORRECT!' if correct else 'WRONG!'), (12, 50), cv2.FONT_HERSHEY_DUPLEX, 0.7, |
|
|
79 |
# (0, 0, 0), 2) |
|
|
80 |
# cv2.putText(image, '{0}'.format('CORRECT!' if correct else 'WRONG!'), (10, 48), cv2.FONT_HERSHEY_DUPLEX, 0.7, |
|
|
81 |
# (0, 255, 0) if correct else (0, 0, 255), 2) |
|
|
82 |
# |
|
|
83 |
# # Append the image |
|
|
84 |
# blocks.append(image) |
|
|
85 |
# |
|
|
86 |
# |
|
|
87 |
# # Display images and predictions |
|
|
88 |
# row1 = np.concatenate(blocks[0:3], axis=1) |
|
|
89 |
# row2 = np.concatenate(blocks[3:6], axis=1) |
|
|
90 |
# # cv2.imshow('Predictions', np.concatenate((row1, row2), axis=0)) |
|
|
91 |
# cv2.imwrite('D:/New folder/New folderpredictions_renet50.jpg', np.concatenate((row1, row2), axis=0)) |
|
|
92 |
# cv2.waitKey(0) |