[f1e01c]: / work_configs / tract / tract_unet_smp.py

Download this file

149 lines (142 with data), 4.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
num_classes = 3
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
loss = [
# dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
# dict(type='LovaszLoss', per_image=True, loss_type='binary', loss_weight=1.0),
dict(type='SMPDiceLoss', mode='multilabel', loss_weight=1.0),
]
model = dict(
type='SMPUnet',
backbone=dict(
type='timm-efficientnet-b4',
pretrained="noisy-student"
),
decode_head=dict(
num_classes=num_classes,
align_corners=False,
loss_decode=loss
),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode="whole", multi_label=True))
# dataset settings
dataset_type = 'CustomDataset'
data_root = 'data/tract/'
classes = ['large_bowel', 'small_bowel', 'stomach']
palette = [[0,0,0], [128,128,128], [255,255,255]]
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
size = 384
# crop_size = (256, 256)
albu_train_transforms = [
# dict(type='Affine', rotate=45, translate_percent=10, scale=0.05),
# dict(type='IAAPiecewiseAffine', p=0.5),
# dict(type='OpticalDistortion', p=0.5),
# dict(type='OneOf', transforms=[
# dict(type='Blur'),
# dict(type='GaussNoise'),
# dict(type='JpegCompression')
# ]),
# dict(type='GridDistortion', p=0.5),
dict(type='RandomBrightnessContrast', p=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(size, size), keep_ratio=True),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='RandomFlip', prob=0.5, direction='vertical'),
dict(type='RandomRotate90', prob=0.5),
dict(type='Albu', transforms=albu_train_transforms),
# dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(size, size), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(size, size),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(size, size), pad_val=0, seg_pad_val=255),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=16,
workers_per_gpu=4,
train=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
img_dir='mmseg_train/images',
ann_dir='mmseg_train/labels',
img_suffix=".jpg",
seg_map_suffix='.png',
split="mmseg_train/splits/fold_0.txt",
classes=classes,
palette=palette,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
img_dir='mmseg_train/images',
ann_dir='mmseg_train/labels',
img_suffix=".jpg",
seg_map_suffix='.png',
split="mmseg_train/splits/holdout_0.txt",
classes=classes,
palette=palette,
pipeline=test_pipeline),
test=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
test_mode=True,
img_dir='test/images',
ann_dir='test/labels',
img_suffix=".jpg",
seg_map_suffix='.png',
classes=classes,
palette=palette,
pipeline=test_pipeline))
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='CustomizedTextLoggerHook', by_epoch=False),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None # "./work_dirs/tamper/convx_t_8x/epoch_96.pth"
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
total_iters = 20
# optimizer
optimizer = dict(type='AdamW', lr=1e-3, betas=(0.9, 0.999), weight_decay=0.05)
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
# learning policy
lr_config = dict(policy='poly',
warmup='linear',
warmup_iters=500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)
# runtime settings
find_unused_parameters=True
runner = dict(type='IterBasedRunner', max_iters=total_iters * 1000)
checkpoint_config = dict(by_epoch=False, interval=total_iters * 1000, save_optimizer=False)
evaluation = dict(by_epoch=False, interval=5000, metric=['imDice', 'mDice'], pre_eval=True)
fp16 = dict()
work_dir = f'./work_dirs/tract/unet_b4_16x2_dice_f0'