num_classes = 3
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
loss = [
dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
# dict(type='LovaszLoss', per_image=True, loss_type='binary', loss_weight=1.0),
# dict(type='DiceLoss', multi_label=True, loss_weight=1.0),
]
model = dict(
type='SMPUnet',
backbone=dict(
type='tu-convnext_base_384_in22ft1k',
depth=4,
pretrained=True
),
decode_head=dict(
num_classes=num_classes,
align_corners=False,
loss_decode=loss
),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode="whole", multi_label=True))
# dataset settings
dataset_type = 'CustomDataset'
data_root = 'data/tract/'
classes = ['large_bowel', 'small_bowel', 'stomach']
palette = [[0,0,0], [128,128,128], [255,255,255]]
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
size = 512
# crop_size = (256, 256)
albu_train_transforms = [
# dict(type='Affine', rotate=45, translate_percent=10, scale=0.05),
# dict(type='IAAPiecewiseAffine', p=0.5),
# dict(type='OpticalDistortion', p=0.5),
# dict(type='GridDistortion', p=0.5),
dict(type='RandomBrightnessContrast', p=0.5),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(size, size), keep_ratio=True),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(type='RandomFlip', prob=0.5, direction='vertical'),
dict(type='RandomRotate90', prob=0.5),
dict(type='Albu', transforms=albu_train_transforms),
# dict(type='PhotoMetricDistortion'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(size, size), pad_val=0, seg_pad_val=255),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(size, size),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(size, size), pad_val=0, seg_pad_val=255),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=16,
workers_per_gpu=4,
train=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
img_dir='mmseg_train/images',
ann_dir='mmseg_train/labels',
img_suffix=".jpg",
seg_map_suffix='.png',
split="mmseg_train/splits/fold_0.txt",
classes=classes,
palette=palette,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
img_dir='mmseg_train/images',
ann_dir='mmseg_train/labels',
img_suffix=".jpg",
seg_map_suffix='.png',
split="mmseg_train/splits/holdout_0.txt",
classes=classes,
palette=palette,
pipeline=test_pipeline),
test=dict(
type=dataset_type,
multi_label=True,
data_root=data_root,
test_mode=True,
img_dir='test/images',
ann_dir='test/labels',
img_suffix=".jpg",
seg_map_suffix='.png',
classes=classes,
palette=palette,
pipeline=test_pipeline))
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='CustomizedTextLoggerHook', by_epoch=False),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None # "./work_dirs/tamper/convx_t_8x/epoch_96.pth"
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
total_iters = 20
# optimizer
optimizer = dict(type='AdamW', lr=0.001, betas=(0.9, 0.999), weight_decay=0.05)
optimizer_config = dict(type='Fp16OptimizerHook', loss_scale='dynamic')
# learning policy
lr_config = dict(policy='poly',
warmup='linear',
warmup_iters=500,
warmup_ratio=1e-6,
power=1.0, min_lr=0.0, by_epoch=False)
# runtime settings
find_unused_parameters=True
runner = dict(type='IterBasedRunner', max_iters=total_iters * 1000)
checkpoint_config = dict(by_epoch=False, interval=total_iters * 1000, save_optimizer=False)
evaluation = dict(by_epoch=False, interval=5000, metric=['imDice', 'mDice'], pre_eval=True)
fp16 = dict()
work_dir = f'./work_dirs/tract/unet_convxb_16x2_baseline_f0'