[f1e01c]: / tests / test_models / test_backbones / test_vit.py

Download this file

177 lines (142 with data), 5.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmseg.models.backbones.vit import VisionTransformer
from .utils import check_norm_state
def test_vit_backbone():
with pytest.raises(TypeError):
# pretrained must be a string path
model = VisionTransformer()
model.init_weights(pretrained=0)
with pytest.raises(TypeError):
# img_size must be int or tuple
model = VisionTransformer(img_size=512.0)
with pytest.raises(TypeError):
# out_indices must be int ,list or tuple
model = VisionTransformer(out_indices=1.)
with pytest.raises(TypeError):
# test upsample_pos_embed function
x = torch.randn(1, 196)
VisionTransformer.resize_pos_embed(x, 512, 512, 224, 224, 'bilinear')
with pytest.raises(AssertionError):
# The length of img_size tuple must be lower than 3.
VisionTransformer(img_size=(224, 224, 224))
with pytest.raises(TypeError):
# Pretrained must be None or Str.
VisionTransformer(pretrained=123)
with pytest.raises(AssertionError):
# with_cls_token must be True when output_cls_token == True
VisionTransformer(with_cls_token=False, output_cls_token=True)
# Test img_size isinstance tuple
imgs = torch.randn(1, 3, 224, 224)
model = VisionTransformer(img_size=(224, ))
model.init_weights()
model(imgs)
# Test img_size isinstance tuple
imgs = torch.randn(1, 3, 224, 224)
model = VisionTransformer(img_size=(224, 224))
model(imgs)
# Test norm_eval = True
model = VisionTransformer(norm_eval=True)
model.train()
# Test ViT backbone with input size of 224 and patch size of 16
model = VisionTransformer()
model.init_weights()
model.train()
assert check_norm_state(model.modules(), True)
# Test normal size input image
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test large size input image
imgs = torch.randn(1, 3, 256, 256)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 16, 16)
# Test small size input image
imgs = torch.randn(1, 3, 32, 32)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 2, 2)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test unbalanced size input image
imgs = torch.randn(1, 3, 112, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 7, 14)
# Test irregular input image
imgs = torch.randn(1, 3, 234, 345)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 15, 22)
# Test with_cp=True
model = VisionTransformer(with_cp=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test with_cls_token=False
model = VisionTransformer(with_cls_token=False)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test final norm
model = VisionTransformer(final_norm=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test patch norm
model = VisionTransformer(patch_norm=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[-1].shape == (1, 768, 14, 14)
# Test output_cls_token
model = VisionTransformer(with_cls_token=True, output_cls_token=True)
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert feat[0][0].shape == (1, 768, 14, 14)
assert feat[0][1].shape == (1, 768)
def test_vit_init():
path = 'PATH_THAT_DO_NOT_EXIST'
# Test all combinations of pretrained and init_cfg
# pretrained=None, init_cfg=None
model = VisionTransformer(pretrained=None, init_cfg=None)
assert model.init_cfg is None
model.init_weights()
# pretrained=None
# init_cfg loads pretrain from an non-existent file
model = VisionTransformer(
pretrained=None, init_cfg=dict(type='Pretrained', checkpoint=path))
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained=None
# init_cfg=123, whose type is unsupported
model = VisionTransformer(pretrained=None, init_cfg=123)
with pytest.raises(TypeError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg=None
model = VisionTransformer(pretrained=path, init_cfg=None)
assert model.init_cfg == dict(type='Pretrained', checkpoint=path)
# Test loading a checkpoint from an non-existent file
with pytest.raises(OSError):
model.init_weights()
# pretrained loads pretrain from an non-existent file
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = VisionTransformer(
pretrained=path, init_cfg=dict(type='Pretrained', checkpoint=path))
with pytest.raises(AssertionError):
model = VisionTransformer(pretrained=path, init_cfg=123)
# pretrain=123, whose type is unsupported
# init_cfg=None
with pytest.raises(TypeError):
model = VisionTransformer(pretrained=123, init_cfg=None)
# pretrain=123, whose type is unsupported
# init_cfg loads pretrain from an non-existent file
with pytest.raises(AssertionError):
model = VisionTransformer(
pretrained=123, init_cfg=dict(type='Pretrained', checkpoint=path))
# pretrain=123, whose type is unsupported
# init_cfg=123, whose type is unsupported
with pytest.raises(AssertionError):
model = VisionTransformer(pretrained=123, init_cfg=123)